首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
流感病毒感染诱导MDCK细胞凋亡的研究   总被引:1,自引:0,他引:1  
用荧光染色、DNA凝胶电泳等方法检测了A型流感病毒株A1/京防86-1和B型流感病毒株B/沪防93-1诱导狗肾体代细胞(MDCKcells)的凋亡情况,并采用MTT法和流式细胞仪比较了这2株病毒对MMCK细胞的毒力和凋亡诱导能力水平。结果显示:病毒感染6h后,细胞DNA发生断裂,病毒感染12h后,可见明显的染色质凝聚;在一定范围内,细胞凋亡强度表现出明显的时间和剂量依赖关系;并且,A型流感病毒株的毒力和调亡诱导能力均强于B型流感病毒株。实验结果表明:流感病毒感染引起的细胞死亡主要是通过调亡实现的,毒力不同的流感病毒株诱导细胞调亡的能力不同。  相似文献   

2.
Apoptosis: a mechanism of cell killing by influenza A and B viruses.   总被引:19,自引:4,他引:15       下载免费PDF全文
In previous studies, we observed that the virulent avian influenza A virus A/Turkey/Ontario/7732/66 (Ty/Ont) induced severe lymphoid depletion in vivo and rapidly killed an avian lymphocyte cell line (RP9) in vitro. In examining the mechanism of cell killing by this virus, we found that Ty/Ont induced fragmentation of the RP9 cellular DNA into a 200-bp ladder and caused ultrastructural changes characteristic of apoptotic cell death by 5 h after infection. We next determined that the ability to induce apoptosis was not unique to Ty/Ont. In fact, a variety of influenza A viruses (avian, equine, swine, and human), as well as human influenza B viruses, induced DNA fragmentation in a permissive mammalian cell line, Madin-Darby canine kidney (MDCK), and this correlated with the development of a cytopathic effect during viral infection. Since the proto-oncogene bcl-2 is a known inhibitor of apoptosis, we transfected MDCK cells with the human bcl-2 gene; these stably transfected cells (MDCKbcl-2) did not undergo DNA fragmentation after virus infection. In addition, cytotoxicity assays at 48 to 72 h after virus infection showed a high level of cell viability for MDCKbcl-2 compared with a markedly lower level of viability for MDCK cells. These studies indicate that influenza A and B viruses induce apoptosis in cell cultures; thus, apoptosis may represent a general mechanism of cell death in hosts infected with influenza viruses.  相似文献   

3.
Eight cell lines were systematically compared for their permissivity to primary infection, replication, and spread of seven human influenza viruses. Cell lines were of human origin (Caco-2, A549, HEp-2, and NCI-H292), monkey (Vero, LLC-MK2), mink (Mv1 Lu), and canine (MDCK). The influenza viruses included seasonal types and subtypes and a pandemic virus. The MDCK, Caco-2, and Mv1 Lu cells were subsequently compared for their capacity to report neutralization titers at day one, three and six post-infection. A gradient of sensitivity to primary infection across the eight cell lines was observed. Relative to MDCK cells, Mv1 Lu reported higher titers and the remaining six cell lines reported lower titers. The replication and spread of the seven influenza viruses in the eight cell substrates was determined using hemagglutinin expression, cytopathic effect, and neuraminidase activity. Virus growth was generally concordant with primary infection, with a gradient in virus replication and spread. However, Mv1 Lu cells poorly supported virus growth, despite a higher sensitivity to primary infection. Comparison of MDCK, Caco-2, and Mv1 Lu in neutralization assays using defined animal antiserum confirmed MDCK cells as the preferred cell substrate for influenza virus testing. The results observed for neutralization at one day post-infection showed MDCK cells were similar (<1 log2 lower) or superior (>1 log2 higher) for all seven viruses. Relative to Caco-2 and Mv1 Lu cells, MDCK generally reported the highest titers at three and six days post-infection for the type A viruses and lower titers for the type B viruses and the pandemic H9N2 virus. The reduction in B virus titer was attributed to the complete growth of type B viruses in MDCK cells before day three post-infection, resulting in the systematic underestimation of neutralization titers. This phenomenon was also observed with Caco-2 cells.  相似文献   

4.
The HeLa cell line which is one of the most popular cell lines was shown to be suitable for isolation of types A (H3N2) and B influenza viruses from throat washings of patients. Sixty-nine and 67 out of 147 throat washings taken from patients during the period from January to April, 1994, were positive for influenza A virus in HeLa cells and MDCK cells, respectively. Seven out of 10 throat washings taken between January and March, 1993, were positive for influenza B virus in MDCK. Of these 7, 4 were also positive for HeLa cells.  相似文献   

5.
Trypsin is commonly used in Madin–Darby canine kidney (MDCK) cell culture-based influenza vaccine production to facilitate virus infection by proteolytic activation of viral haemagglutinin, which enables multi-cycle replication. In this study, we were able to demonstrate that trypsin also interferes with pathogen defence mechanisms of host cells. In particular, a trypsin concentration of 5 BAEE U/mL (4.5 μg/mL porcine trypsin) used in vaccine manufacturing strongly inhibited interferon (IFN) signalling by proteolytic degradation of secreted IFN. Consequently, absence of trypsin during infection resulted in a considerably stronger induction of IFN signalling and apoptosis, which significantly reduced virus yields. Under this condition, multi-cycle virus replication in MDCK cells was not prevented but clearly delayed. Therefore, incomplete infection can be ruled out as the reason for the lower virus titres. However, suppression of IFN signalling by overexpression of viral IFN antagonists (influenza virus PR8-NS1, rabies virus phosphoprotein) partially rescued virus titres in the absence of trypsin. In addition, virus yields could be almost restored by using the influenza strain A/WSN/33 in combination with fetal calf serum (FCS). For this strain, FCS enabled trypsin-independent fast propagation of virus infection, probably outrunning cellular defence mechanisms and apoptosis induction in the absence of trypsin. Overall, addition of trypsin provided optimal conditions for high yield vaccine production in MDCK cells by two means. On the one hand, proteolytic degradation of IFN keeps cellular defence at a low level. On the other hand, enhanced virus spreading enables viruses to replicate before the cellular response becomes fully activated.  相似文献   

6.
The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg‐based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin‐Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25–30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers ≥8.6 log10 FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn‐around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production. Biotechnol. Bioeng. 2010;106: 906–917. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Myrica rubra leaf ethanol extract was added to culture medium of Madino-Darby canine kidney (MDCK) cells inoculated with influenza virus, and the inhibition of influenza virus replication was measured. Myrica rubra leaf ethanol extract showed anti-influenza virus activity irrespective of the hemagglutinin antigen type in the influenza virus type A (H1N1), its subtype (H3N2), and type B.  相似文献   

8.
应用抑制性消减杂交技术筛选流感病毒感染宿主应答基因   总被引:5,自引:0,他引:5  
从宿主系统寻找病毒感染特异性相关的生物大分子是研究病毒药物靶标和诊断标志物的新方向 .为了筛选宿主细胞中流感病毒感染特异性基因 ,采用抑制性消减杂交技术 (SSH) ,以流感病毒A 鲁防 93 9(H3N2 )感染MDCK细胞及正常MDCK细胞为材料 ,构建病毒感染特异性差减cDNA文库 ,PCR法扩增鉴定其中插入片段大小 .从差减文库中随机挑取 10 0个克隆进行测序 ,用生物信息学方法对其同源性和基因功能进行分析和预测 .结果显示 ,成功构建了流感病毒感染特异性差减cDNA文库 ,文库中cDNA片段长度在 2 5 0~ 10 0 0bp之间 .从文库中随机选取 10 0个克隆测序 ,获得了 95个有效序列 ,经blast同源性分析发现 ,大部分基因为参与宿主细胞能量代谢和蛋白质生物合成过程中的基因 ;其中 19个为无任何功能线索的新基因片段 .流感病毒感染特异性差减cDNA文库的建立和筛选出病毒感染应答候选新基因cDNA片段 ,为发现新型流感病毒药靶和诊断标志物以及病毒感染机制研究打下基础  相似文献   

9.
We previously demonstrated that expression of bcl-2 in Madin-Darby canine kidney (MDCK) cells blocks influenza virus-induced apoptosis and DNA fragmentation. We show here that expression of bcl-2 also reduces the level of infectious virus production and the spread of virus in MDCK cell cultures infected at a low multiplicity of infection. This effect is associated with modified glycosylation of the hemagglutinin protein.  相似文献   

10.
We sought to investigate the cellular uptake and antiviral activity for the M1 zinc finger peptides derived from influenza A and influenza B viruses in vitro. No cellular uptake was detected by fluorescent microscopy for the synthetic zinc finger peptides. When flanked to a cell permeable peptide Tp10, the zinc finger recombinant proteins were efficiently internalized by MDCK cells. However, no antiviral activity was detected against homologous or heterologous virus infections for the synthetic peptides or the Tp10-flanked recombinant proteins, regardless treated with or without Zn2+. Nevertheless, MDCK cell constitutively expressing the M1 zinc finger peptides in cell nuclei potently inhibited replication of homologous, but not heterologous influenza viruses. Adenoviral vector delivered M1 zinc finger peptides also exhibited potent antiviral activity against homologous viruses challenge. Transduction at 100 PFU dose of recombinant adenovirus efficiently protected 99% of the cells from 100 TCID50 of different virus infections for both peptides. These results brought new insight to the antiviral researches against influenza virus infections.  相似文献   

11.
蛋氨酸脑啡肽(MEK)抗B型流感病毒感染作用的研究   总被引:1,自引:0,他引:1  
研究MEK抗B型流感病毒感染的作用。采用MDCK细胞和9~10日龄鸡胚,按不同的顺序加入不同剂量MEK和B型流感病毒,共培养72 h后做血凝实验。所有加入B型流感病毒的MDCK细胞均培养出病毒,HA滴度为1:64。在鸡胚尿囊腔中,先注入MEK孵育24 h后,再注入B型流感病毒的鸡胚也培养出病毒,HA滴度为1:6.8,与病毒对照组比较P〈0.01,有统计学意义。实验结果未见MEK直接抗B型流感病毒感染MDCK细胞株的作用,但可见MEK抗B型流感病毒感染鸡胚的作用。  相似文献   

12.
刘鹤  宋丽萍  黄文林 《微生物学报》2010,50(10):1399-1405
摘要:【目的】研究发现microRNAs(miRNAs)可以参与调控病毒在宿主细胞内感染和复制的过程。作者研究了两条miRNAs对H1N1型流感病毒在宿主细胞内复制的影响。【方法】构建miR26a和miR939的高效表达载体,并将这两种表达载体转入MDCK细胞中,24 h后用H1N1型流感病毒感染转染后的MDCK (Madin dardy canine kidney) 细胞,接种72 h后,检测流感病毒的复制情况,研究miR26a和miR939对H1N1型流感病毒在MDCK细胞内复制的影响。【结果】实验结果表明,miRNAs的表达载体可以在细胞内高效表达miRNAs,不同的miRNAs对流感病毒在MDCK细胞中复制的调控作用不同, miR26a可以有效抑制流感病毒在MDCK细胞中的复制,而miR939则促进流感病毒在MDCK细胞中的复制的作用。【结论】细胞内miRNAs可以调控H1N1型流感病毒在宿主细胞中的复制过程,本文首次报导miR26a和miR939在流感病毒复制过程中的调控作用。  相似文献   

13.
It is not well-known whether apoptosis signaling affects influenza virus infection and reproduction in human lung epithelial cells. Using A549 cell line, we studied the relationship of some apoptosis-associated molecules with novel pandemic influenza A (H1N1) virus, A/California/04/2009. Infected cells displayed upregulated Fas ligand, activated FADD and caspase-8, and downregulated FLIP in the extrinsic apoptotic pathway. p53 expression increased and Bcl-XL expression decreased in the intrinsic pathway. Expression of pre-apoptotic molecules (FasL, FADD, and p53) increased virus replication, while inhibition of activity of FADD, caspase-8 and caspase-3, and expression of anti-apoptotic proteins (FLIP and Bcl-XL) decreased virus replication. p38, ERK and JNK from MAPK pathways were activated in infected cells, and inhibition with their inhibitors diminished virus replication. In the p38 superfamily, p38α expression increased viral RNA production, while expression of p38β and p38γ decreased. These data indicated that influenza virus induces apoptotic signaling pathways, which benefit virus replication.  相似文献   

14.
A process for human influenza H1N1 virus vaccine production from Madin–Darby canine kidney (MDCK) cells using a novel packed-bed bioreactor is described in this report. The mini-bioreactor was used to study the relationship between cell density and glucose consumption rate and to optimize the infection parameters of the influenza H1N1 virus (A/New Caledonia/20/99). The MDCK cell culture and virus infection were then monitored in a disposable perfusion bioreactor (AmProtein Current Perfusion Bioreactor) with proportional–integral–derivative control of pH, dissolved O2 (DO), agitation, and temperature. During 6 days of culture, the total cell number increased from 2.0?×?109 to 3.2?×?1010 cells. The maximum virus titers of 768 hemagglutinin units/100 μL and 7.8?×?107 50 % tissue culture infectious doses/mL were obtained 3 days after infection. These results demonstrate that using a disposable perfusion bioreactor for large-scale cultivation of MDCK cells, which allows for the control of DO, pH, and other conditions, is a convenient and stable platform for industrial-scale production of influenza vaccines.  相似文献   

15.
Interplay between the host and influenza virus has a pivotal role for the outcome of infection. The matrix proteins M2/BM2 from influenza (A and B) viruses are small type III integral membrane proteins with a single transmembrane domain, a short amino-terminal ectodomain and a long carboxy-terminal cytoplasmic domain. They function as proton channels, mainly forming a membrane-spanning pore through the transmembrane domain tetramer, and are essential for virus assembly and release of the viral genetic materials in the endosomal fusion process. However, little is known about the host factors which interact with M2/BM2 proteins and the functions of the long cytoplasmic domain are currently unknown. Starting with yeast two-hybrid screening and applying a series of experiments we identified that the β1 subunit of the host Na+/K+-ATPase β1 subunit (ATP1B1) interacts with the cytoplasmic domain of both the M2 and BM2 proteins. A stable ATP1B1 knockdown MDCK cell line was established and we showed that the ATP1B1 knockdown suppressed influenza virus A/WSN/33 replication, implying that the interaction is crucial for influenza virus replication in the host cell. We propose that influenza virus M2/BM2 cytoplasmic domain has an important role in the virus-host interplay and facilitates virus replication.  相似文献   

16.
Replication of human influenza A viruses and proteolytic cleavage of the viral glycoprotein HA0 HA1/2 were studied in passaged cultures of epithelial cells of the serous membrane of human large intestine (CACO-2 line), dog kidney cells (MDCK), and monkey kidney cells (CV-1). Cleavage of the viral glycoprotein HA0, synthesis of activated virions, multicycle virus infection, and effective production of viral foci under an agarose overlayer were found in CACO-2 cells. By pulse–chase labeling of viral glycoproteins, testing the sensitivity to endoglycosidase-H of the viral glycoproteins HA0 and HA1/2 synthesized, and inhibiting the HA0 proteolysis with brefeldin A, the HA0 HA1/2 proteolysis was established to occur in the late stages of intracellular transport in the trans-Golgi and plasma membrane areas of the cells. Proteolysis of the viral glycoprotein HA0 in CACO-2 cells was suppressed by aprotinin, a natural inhibitor of serine proteinases. Unlike MDCK and CV-1 cells resistant to apoptosis induced by influenza virus, CACO-2 cells retained their viability for 2-3 days after infection with human influenza A virus.  相似文献   

17.
18.
A mathematical model that describes the replication of influenza A virus in animal cells in large-scale microcarrier culture is presented. The virus is produced in a two-step process, which begins with the growth of adherent Madin-Darby canine kidney (MDCK) cells. After several washing steps serum-free virus maintenance medium is added, and the cells are infected with equine influenza virus (A/Equi 2 (H3N8), Newmarket 1/93). A time-delayed model is considered that has three state variables: the number of uninfected cells, infected cells, and free virus particles. It is assumed that uninfected cells adsorb the virus added at the time of infection. The infection rate is proportional to the number of uninfected cells and free virions. Depending on multiplicity of infection (MOI), not necessarily all cells are infected by this first step leading to the production of free virions. Newly produced viruses can infect the remaining uninfected cells in a chain reaction. To follow the time course of virus replication, infected cells were stained with fluorescent antibodies. Quantitation of influenza viruses by a hemagglutination assay (HA) enabled the estimation of the total number of new virions produced, which is relevant for the production of inactivated influenza vaccines. It takes about 4-6 h before visibly infected cells can be identified on the microcarriers followed by a strong increase in HA titers after 15-16 h in the medium. Maximum virus yield Vmax was about 1x10(10) virions/mL (2.4 log HA units/100 microL), which corresponds to a burst size ratio of about 18,755 virus particles produced per cell. The model tracks the time course of uninfected and infected cells as well as virus production. It suggests that small variations (<10%) in initial values and specific rates do not have a significant influence on Vmax. The main parameters relevant for the optimization of virus antigen yields are specific virus replication rate and specific cell death rate due to infection. Simulation studies indicate that a mathematical model that neglects the delay between virus infection and the release of new virions gives similar results with respect to overall virus dynamics compared with a time delayed model.  相似文献   

19.
The infectivity of influenza viruses to host cells depends on the activation of the viral glycoprotein hemagglutinin (HA) by proteases. Starting from the observation that influenza virus replication in MDCK (Madin Darby canine kidney) cells was impaired by inactivation of trypsin in the culture fluids, we demonstrated that the inhibitory activity was resolved into two Trypsin-inactivating factors (TF), TF A (15 kDa) and TF B (11 kDa). N-terminal protein sequences of the factors revealed that TF A was a known Submandibular Protease Inhibitor (SPI) secreted in dog saliva, while TF B was a novel protein (renamed CKPI; canine kidney protease inhibitor). Following peptide mapping and protein sequencing of CKPI we obtained a 390 bp cDNA encoding a 130-amino-acid protein from MDCK cell total RNA. Protein sequence comparison showed a 63.8% identity with human secretory leukocyte protease inhibitor (SLPI), the molecule containing two conserved whey acidic protein (WAP) motifs, and we suggest that CKPI is thought to be the canine analogue of human SLPI. These results suggest that the inhibitory factors are secreted from MDCK cells, which are involved in prevention of virus replication, and applicable to the protection of host cells from virus infection.  相似文献   

20.
Development of serum-free suspension cell culture processes is very important for influenza vaccine production. Previously, we developed a MDCK suspension cell line in a serum-free medium. In the present study, the growth kinetics of suspension MDCK cells and influenza virus production in the serum-free medium were investigated, in comparison with those of adherent MDCK cells in both serum-containing and serum-free medium. It was found that the serum-free medium supported the stable subculture and growth of both adherent and suspension cells. In batch culture, for both cell lines, the growth kinetics in the serum-free medium was comparable with those in the serum-containing medium and a commercialized serum-free medium. In the serum-free medium, peak viable cell density (VCD), haemagglutinin (HA) and median tissue culture infective dose (TCID50) titers of the two cell lines reached 4.51×106 cells/mL, 2.94Log10(HAU/50 μL) and 8.49Log10(virions/mL), and 5.97×106 cells/mL, 3.88Log10(HAU/50 μL), and 10.34Log10(virions/mL), respectively. While virus yield of adherent cells in the serum-free medium was similar to that in the serum-containing medium, suspension culture in the serum-free medium showed a higher virus yield than adherent cells in the serum-containing medium and suspension cells in the commercialized serum-free medium. However, the percentage of infectious viruses was lower for suspension culture in the serum-free medium. These results demonstrate the great potential of this suspension MDCK cell line in serum-free medium for influenza vaccine production and further improvements are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号