首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Membranes of intact rabbit reticulocytes and rat liver mitochondrial membranes oxygenated by the pure reticulocyte lipoxygenase contain 13-keto-9Z,11E-octadecadienoic acid and 9-keto-10E,12Z-octadecadienoic acid. In mitochondrial membranes not treated with lipoxygenase and in rabbit erythrocyte membranes these products were not detected. The chemical structure of the compounds has been identified by cochromatography with authentic standards on various types of HPLC columns, by uv and ir spectroscopy and GC/MS. In the membranes of rabbit reticulocytes up to 2% of the linoleate residues are present as its 9- and 13-keto derivatives. Most of the keto compounds (up to 90%) are esterified in the membrane ester lipids, only about 10% were found in the free fatty acid fraction. It is proposed that the keto dienoic fatty acids are formed via decomposition of hydroperoxy polyenoic fatty acids originating from the oxygenation of the membrane lipids by the reticulocyte lipoxygenase.  相似文献   

2.
Pseudomonas aeruginosa is a gram-negative pathogen, which causes life-threatening infections in immunocompromized patients. These bacteria express a secreted lipoxygenase (PA-LOX), which oxygenates free arachidonic acid to 15S-hydro(pero)xyeicosatetraenoic acid. It binds phospholipids at its active site and physically interacts with lipid vesicles. When incubated with red blood cells membrane lipids are oxidized and hemolysis is induced but the structures of the oxygenated membrane lipids have not been determined. Using a lipidomic approach, we analyzed the formation of oxidized phospholipids generated during the in vitro incubation of recombinant PA-LOX with human erythrocytes and cultured human lung epithelial cells. Precursor scanning of lipid extracts prepared from these cells followed by multiple reaction monitoring and MS/MS analysis revealed a complex mixture of oxidation products. For human red blood cells this mixture comprised forty different phosphatidylethanolamine and phosphatidylcholine species carrying oxidized fatty acid residues, such as hydroxy-octadecadienoic acids, hydroxy- and keto-eicosatetraenoic acid, hydroxy-docosahexaenoic acid as well as oxygenated derivatives of less frequently occurring polyenoic fatty acids. Similar oxygenation products were also detected when cultured lung epithelial cells were employed but here the amounts of oxygenated lipids were smaller and under identical experimental conditions we did not detect major signs of cell lysis. However, live imaging indicated an impaired capacity for trypan blue exclusion and an augmented mitosis rate. Taken together these data indicate that PA-LOX can oxidize the membrane lipids of eukaryotic cells and that the functional consequences of this reaction strongly depend on the cell type.  相似文献   

3.
Incubation of isolated rat liver mitochondria with the pure rabbit reticulocyte lipoxygenase caused a time-dependent inactivation of the monoamine oxidase activities A and B. Furthermore, a conversion of the monoamine oxidase into a diamine oxidase was observed. The inactivation kinetics for both monoamine oxidase activities A and B showed a biphasic behaviour; a reversible short-term inhibition during the first 5 min of incubation was followed by an irreversible inactivation of the enzyme. The kinetic studies suggest that the slow irreversible inactivation of the monoamine oxidase activities is due to secondary reactions subsequent to the initial attack of the lipoxygenase on the mitochondrial outer membrane. During the interaction of the lipoxygenase with the mitochondria, only about 1.5% of the polyenoic fatty acids present in the mitochondrial membranes were oxygenated. The predominant products formed during the interaction of the lipoxygenase with the mitochondrial membranes are (13S)-hydro(pero)xy-9Z,11E-octadecadienoic acid and (15S)-hydro(pero)xy-5,8,11,13(Z,Z,Z,E)-eicosatetraenoic acid.  相似文献   

4.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

5.
The lipid fluidity of microsomal membranes from the petals of cut carnation flowers decreases as the flowers senesce. A comparable change in fluidity was induced by in vitro aging of microsomal membranes from young flowers under conditions in which membranous lipoxygenase-like activity was active. There was no change in fluidity when the membranes were aged in the presence of inhibitors of lipoxygenase or were heat-denatured prior to aging. Membranes from naturally senesced flowers and membranes that had been aged in vitro both sustained an increase in saturated:unsaturated fatty acid ratio that accounted for the decrease in lipid fluidity, and in both instances there was evidence for depletion of the unsaturated fatty acids, linoleic acid, and linolenic acid, which are substrates for lipoxygenase. Loss of lipid phosphate reflecting breakdown of membrane phospholipids preceded the depletion of unsaturated fatty acids attributable to the lipoxygenase-like activity. The data have been interpreted as indicating that fatty acid substrates for membrane-associated lipoxygenase-like activity are made available by the initiation of phospholipid degradation, and that the utilization of these substrates results in a selective depletion of unsaturated fatty acids from the membrane and an ensuing decrease in bulk lipid fluidity.  相似文献   

6.
Oxygenation of biological membranes by the pure reticulocyte lipoxygenase   总被引:11,自引:0,他引:11  
We find that the reticulocyte lipoxygenase can oxygenate rat liver mitochondrial membranes, beef heart submitochondrial particles, rat liver endoplasmic membranes, and erythrocyte plasma membranes (inside-out and right side-out ghosts) without prior action of a phospholipase. After alkaline hydrolysis of the ester lipids, the main products were identified as 15S-hydro(pero)xy-5Z,8Z,11Z,13E-eicosatetr aenoic acid, 17S-hydro(pero)xy-4Z,7Z,10Z,13Z,15E, 19Z,-docosahexaenoic acid, 13S-hydro(pero)xy-9Z,11E-octadecadienoic acid, 9(S/R)-hydro(pero)xy-10E,12Z-octadecadienoic acid as well as the two all-E hydro(pero)xy octadecadienoic acid isomers. At low membrane concentrations (1 mg of protein/ml), the enzyme maintains a high stereospecificity for the S-configuration, but at higher concentrations (20 mg/ml), the products were virtually racemic. Addition of the antioxidant 2,6-ditert-butyl-p-cresol counteracted this tendency to lose stereospecificity. During these enzyme-catalyzed reactions, substantially more oxygen is consumed than can be accounted for as the hydro(pero)xy products. This discrepancy is due to secondary reactions which lead to the decomposition of the primary oxygenation products, the hydroperoxy lipids, and to oxidative modifications of membrane proteins. These data indicate that the reticulocyte lipoxygenase can oxygenate polyenoic fatty acids in various types of biological membrane and that the oxidative modifications are not restricted to the membrane lipids. The results are discussed in terms of the proposed role of the enzyme in the breakdown of mitochondria and other intracellular organelles during the maturation of red blood cells.  相似文献   

7.
A lipoxygenase has been found in the reticulocytes of all mammalian species tested so far (rabbit, rat, mouse, monkey, and humans); evidence from in vitro studies suggests that the lipid-peroxidizing effects of this enzyme could render the mitochondrion and other intracellular organelles prone to the proteolytic degradation which is a natural step in development of the reticulocyte to the mature red cell. In this study we sought evidence of an active lipoxygenase in vivo. A bleeding anemia was induced in rabbits, and in the course of the subsequent reticulocytosis the red cell membranes were examined for the presence of the characteristic lipoxygenase products of linoleic and arachidonic acids. Erythrocyte membranes from control collections contained only small amounts of hydroxy fatty acids (0.03-0.08% of the polyenoic fatty acids). In contrast, reticulocyte-enriched red cells contained up to 3.3% of the polyenoic acids as hydroxylated derivatives. The main hydroxy fatty acid in reticulocyte membranes was identified as 13-L(S)-hydroxy-9Z,11E-octadecadienoic acid. Small amounts of other hydroxy derivatives including 15-hydroxy-5,8,11,13-(Z,Z,Z,E)eicosatetraenoic acid were also detected. These products appeared about 3 days after development of reticulocytosis. The precise structures of the hydroxylated polyenoic fatty acids and the time course of their appearance strongly suggest that their formation is due to the intracellular action of the cell-specific reticulocyte lipoxygenase. These findings are the first evidence for an activity of this enzyme in vivo, and the results support the hypothesis that enzymic peroxidation of reticulocyte intracellular membranes is a step in preparation of the intracellular organelles for proteolytic degradation.  相似文献   

8.
Here we describe for the first time isolation and biochemical characterization of highly purified mitochondrial inner and outer membranes from Pichia pastoris and systematic lipid analysis of submitochondrial fractions. Mitochondria of this yeast are best developed during growth on glycerol or sorbitol, but also on methanol or fatty acids. To obtain organelle membranes at high quality, methods of isolation and subfractionation of mitochondria originally developed for Saccharomyces cerevisiae were adapted and employed. A characteristic feature of the outer mitochondrial membrane of P. pastoris is the higher phospholipid to protein ratio and the lower ergosterol to phospholipid ratio compared to the inner membrane. Another marked difference between the two mitochondrial membranes is the phospholipid composition. Phosphatidylcholine and phosphatidylethanolamine are major phospholipids of both membranes, but the inner membrane is enriched in cardiolipin, whereas the outer membrane contains a high amount of phosphatidylinositol. The fatty acid composition of both mitochondrial membranes is similar. Variation of the carbon source, however, leads to marked changes of the fatty acid pattern both in total and mitochondrial membranes. In summary, our data are the first step to understand the P. pastoris lipidome which will be prerequisite to manipulate membrane components of this yeast for biotechnological purposes.  相似文献   

9.
We investigated the effect of modifying fatty acid modification of heart mitochondrial membranes by dietary intervention on the functions and thermal sensitivity of electron transport system complexes embedded in the inner mitochondrial membrane. Four groups of rats were fed diets differing in their fat (coconut, olive or fish oil) and antioxidant (fish oil with or without probucol) contents. After 16 weeks of feeding, the coconut and olive oil groups had lower long-chain n-3 polyunsaturated fatty acids contents and a lower unsaturation index compared to both fish oil groups. These differences in fatty acid composition were not related to any differences in the mitochondrial respiration rate induced at Complexes I, II or IV, or to differences in their thermal sensitivity. The coconut oil group showed a lower mitochondrial affinity for pyruvate at 5 degrees C (k(mapp)=6.4+/-1.8) compared to any other groups (k(mapp)=3.8+/-0.5; 4.7+/-0.8; 3.6+/-1.1, for olive, fish oil and fish oil and probucol groups, respectively). At least in rat heart, our results do not support a major impact of the fatty acid composition of the mitochondrial membrane on the function of mitochondrial enzymatic complexes or on their temperature sensitivity.  相似文献   

10.
The effects of copper deficiency on the fatty acid composition of mitochondrial and microsomal phospholipids in rat liver were studied. Copper deficiency was induced by a milk powder diet. To evaluate the effect of the milk diet on the fatty acid pattern of mitochondrial and microsomal phospholipids, one group of rats was fed Cusupplemented powdered milk. A decrease in the relative proportion of linoleic acid and an increase in the level of oleic and docosahexaenoic acids in membrane phospholipids were found in this group. However, no changes in the fatty acid pattern characteristic of essential fatty acid deficiency were observed. Dietary copper deficiency produced a significant decrease in the relative amounts of linoleic and arachidonic acids, as well as an increase in the docosahexaenoic acid content in both mitochondrial and microsomal membranes compared to the nondeficient controls. The disproportionate quantities of polyunsaturated fatty acids are discussed with a view to the disturbances of membrane function in copper deficiency.  相似文献   

11.
It is shown that a tetrapeptide fragment of defensin does not alter the phospholipid composition in the membranes of CHO-K1 cells but regulates the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine (PEA), phosphatidylserine (PS), and phosphatidylinositol (PI). Incubation of the cells in the presence of this tetrapeptide resulted in modification of unsaturated fatty acid composition in the studied phospholipids. The content of monoenoic (mainly C18 : 1ω9) and/or dienoic (C18 : 2ω6) fatty acids increased, while the level of polyenoic fatty acids decreased. It was found that in the polyenoic fatty acid group of the PEA, PS and PI molecules, the ω3-/ω6-acid ratio decreased mainly due to the lower content of long-chain ω3-acids with 20 and/or 22 carbonic atoms. The possible role of this peptide in inhibition of the activity of Δ6- and Δ5-desaturases involved in the synthesis of long-chain polyenoic fatty acids, the quantitative alteration of which in phospholipids influences physicochemical parameters in cell membranes, is discussed.  相似文献   

12.
Characteristics of a membrane-associated lipoxygenase in tomato fruit   总被引:18,自引:3,他引:15       下载免费PDF全文
Microsomal membranes isolated from the pericarp of maturegreen tomato (Lycopersicon esculentum) fruit rapidly metabolize exogenous radiolabeled linoleic acid into fatty acid oxidation products at 22°C. The reaction is strongly inhibited by n-propyl gallate, an inhibitor of lipoxygenase. The membranes also rapidly metabolize 16:0/18:2* phosphatidylcholine into radiolabeled oxidation products that comigrate on TLC plates with those formed from free linoleic acid. At 30°C, the formation of fatty acid oxidation products from 16:0/18:2* phosphatidylcholine is slower, and there is an initial accumulation of radiolabeled linoleic acid that is not evident at 22°C, which can be attributed to the action of lipolytic acyl hydrolase. Radiolabeled phosphatidic acid and diacylglycerol are also formed during metabolism of 16:0/18:2* phosphatidylcholine by the microsomal membranes, and there is no breakdown of either linoleic acid or phosphatidylcholine by heat-denatured membranes. When Triton X-100 treated membranes were used, the same patterns of metabolite formation from radiolabeled linoleic acid and 16:0/18:2* phosphatidylcholine were observed. Thus, the enzymes mediating the breakdown of these radiolabeled compounds appear to be tightly associated with the membranes. Collectively, the data indicate that there is a lipoxygenase associated with microsomal membranes from tomato fruit that utilizes free fatty acid substrate released from phospholipids. The microsomal lipoxygenase is strongly active over a pH range of 4.5 to 8.0, comprises approximately 38% of the total (microsomal plus soluble) lipoxygenase activity in the tissue, has an apparent Km of 0.52 millimolar and an apparent Vmax of 0.186 millimoles per minute per milligram of protein. The membranous enzyme also cross-reacts with polyclonal antibodies raised against soybean lipoxygenase-1 and has an apparent molecular mass of 100 kilodaltons.  相似文献   

13.
Mitochondrial phospholipids from goldfish lateral line muscle were analysed with respect to polar and apolar groups. Groups of 20 goldfish, acclimated to 5, 20 and 30°C, were used. Temperature-induced shifts of both polar and apolar groups of the mitochondrial phospholipids were observed. The fatty acid composition of mitochondrial phospholipids is characterized by a large amount of polyenoic acids, dominated by docosahexaenoic acid and by octadecadienoic acid. At the higher acclimation temperatures, a significant decrease in docosahexaenoic acid is found. However, the resultant effect of environmental temperature on the degree of unsaturation is small, in contrast to the marked effect on mean chain length. Pronounced changes in the molar ratio of phosphatidylcholine and phosphatidylethanolamine are seen; a decrease in mitochondrial phosphatidylcholine is observed at low acclimation temperature, which is compensated for by a nearly equal increase in phosphatidylethanolamine. The main phospholipids are, apparently, phosphatidylcholine, phosphatidylethanolamine and cardiolipin, comprising 90% of the total pool of 12 species. It is found that the anionic nature of the phospholipids is increased at low acclimation temperatures. We discuss this effect and its probable importance in the stabilization of the surface potential of the mitochondrial membranes.  相似文献   

14.
1. Fatty acid composition of five main phospholipids of vertebrate brain myelin and synaptosomal proteolipids and membranes was studied. 2. Higher content of monoenoic and lower content of saturated and polyenoic fatty acids was found to be characteristic of phospholipids from myelin and myelin proteolipids as compared to phospholipids from synaptosomal proteolipids and membranes of vertebrates (from fishes to mammalians). Fatty acid composition of phospholipids of proteolipid complexes and of the membranes, from which they were isolated, were found to be similar in various species studied. 3. Microviscosity was found to be higher in myelin as compared to synaptosomal membranes of frog Rana temporaria and in rabbit Lepus cuniculus. It appears to be due to the difference in proteolipid content and in lipid composition of myelin and synaptosomal membranes.  相似文献   

15.
Mohamad Hajarine  Michel Lagarde   《Biochimie》1988,70(12):1749-1758
Radiolabeled polyenoic acids were incorporated into human platelet lipids using albumin as vector. Platelets were then triggered with 0.1 or 1 U/ml thrombin, and 0.5 or 2 x 10(-6) M calcium ionophore A23187. Lipid extracts were analyzed for neutral lipids, free fatty acids, monohydroxylated acids, prostanoids and glycocerophospholipid subclasses. During platelet activation induced by thrombin or by ionophore, arachidonic and eicosapentaenoic acids were liberated from phospholipids in large amounts and were subsequently oxygenated via platelet oxygenases. Substantial amounts of lipoxygenase products and thromboxanes were produced from these acids. Liberation and oxygenation of linoleic, alpha-linolenic, and docosahexaenoic acids were much less pronounced. Polyenoic acid liberation from phospholipid subclasses also behaved quite differently. Apart from alpha-linolenic and adrenic acids, which were poorly liberated, all the others were freed from phosphatidylinositol. In addition, arachidonic, eicosapentaenoic, and 5, 8, 11-eicosatrienoic acids were liberated from phosphatidylcholine at high concentrations of agonists and partially reincorporated into phosphatidylethanolamine. Finally, linoleic acid was deacylated from phosphatidylinositol and phosphatidylserine and almost entirely reacylated into phosphatidylcholine, whereas docosahexaenoic acid was deacylated from phosphatidylcholine and phosphatidylinositol reacylated into phosphatidylethanolamine, respectively. It is concluded that these polyenoic acids, all for which modulate platelet functions, exhibit very different metabolisms. They may act via their oxygenated derivatives and/or at the membrane phospholipid level.  相似文献   

16.
A lipoxygenase has been purified from rabbit reticulocyte-rich anaemic blood cells. It possesses a molecular weight of 78 000 and an isoelectric point of 5.5 and contains 5% neutral sugars and two iron atoms per enzyme molecule. The lipoxygenase has proved to be identical with the inhibitors of respiratory proteins described formerly. The actions of the lipoxygenase on linoleic acid, phospholipids, mitochondrial and erythrocyte membranes and electron transfer particles were studied. A special feature of the reticulocyte lipoxygenase is the suicidal character of its action on lipids. With electron transfer particles the reticulocyte lipoxygenase causes a loss of acid-labile sulfur which accompanies respiratory inhibition; the strong respiratory inhibition is not exerted by soybean lipoxygenase. The reticulocyte lipoxygenase acts preferably on mitochondrial membranes as compared with cell membranes of the erythrocyte; erythrocyte cytosol moderates the action on mitochondrial membranes. Furthermore, the lipoxygenase reaction can concomitantly and irreversibly inactivate sulfhydryl enzymes as demonstrated with muscle glyceraldehyde-3-phosphate dehydrogenase. The occurrence of the lipoxygenase here described is restricted to reticulocytes; very low amounts were observed in bone marrow and no lipoxygenase was detectable in normal blood. During the course of an experimental anaemia the lipoxygenase is produced owing to superinduction in large amounts, which may persist for a long time since they escape inactivation. Preliminary evidence was obtained for the occurrence of other lipoxygenases in tissues of lung, spleen, kidney and also epithelial tumours.  相似文献   

17.
The nature of the interactions between cytochrome c oxidase and the phospholipids in mitochondrial membranes has been investigated by varying the nature of the fatty acyl components of Saccharomyces cerevisiae. A double fatty acid yeast mutant, FAI-4C, grown in combinations of unsaturated (oleic, linoleic, linolenic, and eicosenoic) and saturated (lauric and palmitic) fatty acids, was employed to modify mitochondrial membranes. The supplemented fatty acids constituted a unique combination of different acyl chain lengths with varying degrees of unsaturation which were subsequently incorporated into mitochondrial phospholipids. Phosphatidylethanolamine and cardiolipin, the predominant phospholipids of the inner mitochondrial membrane, were characterized by their high levels of supplemented unsaturated fatty acids. Increasing the chain length or the degree of unsaturation of mitochondrial membrane phospholipids had no effect on altering the nature of the phospholipid polar head group but did result in a profound change on the specific activity of cytochrome c oxidase. When studied under conditions of different ionic strengths and pHs the enzyme's activity, as documented by Eadie-Hofstee plots, showed biphasic kinetics. The kinetic parameters for the low affinity reaction were greatly influenced by the changes in the membrane fatty acids and only marginal effects were noted at the high affinity reaction site. The discontinuities in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, monitored at increasing temperatures, suggested that changes in membrane fluidity were conditioned by alterations in mitochondrial membrane fatty acid constituents. These results indicate that the lipid changes affecting the low affinity binding site of cytochrome c oxidase may be the result of lipid-protein interactions which lead to enzyme conformational changes or may be due to gross changes in membrane fluidity. It may, therefore, follow that this enzyme site may be embedded in or be juxtaposed to the outer surface of the inner mitochondrial membrane bilayer in contrast to the high affinity site which has been shown to be significantly above the membrane plane.  相似文献   

18.
Cabbage leaf discs (Brassica oleracea L., Capitata group) were floated adaxial side up in 0, 0.05, or 0.25 m CaCl2 solutions at 15°C for 14 d in the dark. To assess whether the delay of senescence by calcium treatment involved protection of membrane lipids, chlorophyll and protein content and the lipid composition of the membranes were determined during incubation. Chlorophyll and protein content decreased with time, in correlation with a reduction in the amount of phospholipids. The degree of unsaturation of phospholipids and free fatty acids decreased, whereas the ratio of sterol to phospholipid increased. The proportions of phospholipid classes did not change during senescence. The catabolism of phospholipids was delayed by 0.05 m calcium, but accelerated by 0.25 m, as compared to the untreated control. Based on the levels of the lipid intermediates, phospholipase D, phosphatidic acid phosphatase, lipolytic acyl hydrolase, and lipoxygenase appeared to be involved in the breakdown of phospholipids during senescence. Phospholipase D and phosphatidic acid phosphatase may be directly influenced by calcium. The calcium treatment apparently did not affect the activity of acyl hydrolase. Lipoxygenase, responsible for the peroxidation of the polyunsaturated fatty acids, was probably indirectly influenced by calcium. We conclude that the delay of senescence of cabbage leaf discs by calcium treatment involved protection of membrane lipids from degradation.  相似文献   

19.
Macrophages which were incubated with acetylated low-density lipoproteins, resulting in cholesteryl ester accumulation, incorporated the monohydroxyeicosatetraenoic acids (5-, 15-, and 12-HETEs) into cholesteryl esters. The esterification of these hydroxy fatty acids to cholesterol by total membrane preparations of cholesterol-rich macrophages was dependent on the synthesis of the fatty acyl-CoA derivative, and was catalysed by acyl-CoA:cholesterol acyltransferase (ACAT). Stimulation of membrane ACAT activity by 25-hydroxycholesterol increased the synthesis of cholesteryl 12-HETE by 40%. In contrast, inhibiting ACAT activity by progesterone and compound 58-035 decreased cholesteryl 12-HETE production by 60% and 90% respectively. Although 5-, 15- and 12-HETE were esterified to cholesterol by ACAT, these monohydroxy fatty acids were less optimal as substrates compared with oleic acid or arachidonic acid. The hydrolysis and release of 12-HETE and the other monohydroxyeicosatetraenoic acids from intracellular cholesteryl esters and phospholipids occurred at a faster rate than for the more conventional fatty acids, oleate and arachidonate. Cholesteryl esters which contain hydroxy fatty acids therefore provide only a transient storage for lipoxygenase products, as these fatty acids are released into the medium as readily as hydroxy fatty acids found in phospholipids and triacylglycerols. The data provide evidence, for the first time, of an ACAT-dependent esterification of the lipoxygenase products 5-, 15- and 12-HETEs to cholesterol in the macrophage-derived foam cell. The channelling of these monohydroxy fatty acids to cholesteryl esters provides a mechanism which can alter the amount of lipoxygenase products incorporated into cellular phospholipids, thus averting deleterious changes to cell membranes. ACAT, by catalysing the esterification of monohydroxyeicosatetraenoic acids to cholesterol, could play a key role in regulating the amount of lipoxygenase products in the pericellular space of the cholesterol-enriched macrophage.  相似文献   

20.
The inability of the strain L-fibroblast to synthesize quatitatively significant amounts of polyenoic fatty acid and the apparent lack of turnover of their phosphoglyceride acyl groups under the usual conditions of cell culture makes them especially well suited for studies concerning the effect of fatty acid unsaturation on biological membranes. Such cells grown in the absence of exogenous lipid sources have in their phosphoglycerides only traces of polyenoic fatty acid.By infusing fatty acid supplements into suspension cultures of logarithmically growing cultures of L-fibroblasts it is possible to increase singnificantly their phosphoglyceride polyenoic fatty content to as much as 50% of the total lipid phosphoglyceride fatty acids. The infusion of fatty acid supplements at a constant rate over a 48 h time period diminishes the toxic effects which may accompany single doses of unesterified fatty acid and reduces considerably the accumulation of cytoplasmic lipid droplets. Cultures supplemented in this way have virtually the same generation times as non-supplemented control cultures. The data show that alterations in surface membrane and homogenate polyenoic fatty acid composition are minimal when oleic acid is supplied to the culture. During exposure to large amounts of polyenoic fatty acid, however, the unsaturation of plasma membrane total phosphoglyceride fraction is less than that of the cell homogenate. This effect is more pronounced in the phosphatidylethanolamine than in the phosphatidylcholine fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号