首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Injection of sperm preparations into mammalian oocytes and eggs has been shown to elicit persistent [Ca2+]i oscillations that closely resemble fertilization-associated Ca2+ release. However, the ability of these sperm fractions to initiate egg activation has not been clearly demonstrated. In the present experiments, mouse eggs injected with a porcine sperm preparation were evaluated for early and late events of activation. Events monitored included, among early events, the generation of [Ca2+]i oscillations and cortical granule exocytosis and, among late events, the decrease in histone H1 and myelin basic protein kinase activities, polar body extrusion, pronuclear formation, and cleavage to the two-cell stage. Injection of sperm fractions consistently evoked [Ca2+]i oscillations that, in turn, initiated all events of activation. Uninjected control eggs or eggs injected with buffer or heat-treated sperm fractions failed to show Ca2+ responses or activation. In addition, injection of sperm fractions into recently ovulated eggs (experiments were concluded within 15 hr after human chorionic gonadotropin administration) induced high rates of activation, while similarly aged eggs exposed to 7% ethanol for 5 min, a known parthenogenetic treatment, failed to activate. Together these results indicate that injection of sperm fractions elicits [Ca2+]i oscillations that are capable of initiating normal egg activation. These results support the hypothesis that a sperm component participates in the generation of fertilization-associated [Ca2+]i oscillations. Mol. Reprod. Dev. 49:37–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
In non-excitable cells, several kinds of agonist-induced oscillations of cytosolic Ca2+ concentration ([Ca2+]i) are known which differ in their form and generation mechanism. The oscillation source is, as a rule, the regulation of Ca2+ mobilization from intracellular stores through inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and in some cases through ryanodine receptors (RyR). In the present work, oscillations in single mature adipocytes of mice epididymal fat on the ninth day of cultivation are studied. Cells were stimulated by acetylcholine (ACh) or by fetal bovine serum (FBS). ACh at a concentration of 0.1–5 μM evoked a rise in [Ca2+]i to a peak and subsequent oscillations whose peaks and troughs declined along with increasing amplitude while frequency decreased. In most cells oscillations lasted less than 5 min. The new constant or interspike level exceeded the initial one or was equal to it (at 1 μM ACh). The removal of ACh stopped oscillations immediately. An inhibitor of phospholipase C (U73122) or of IP3R (Xestospongin C) did not affect the pattern of responses, which means that the generation of oscillations does not depend on IP3. At the same time, suppression of responses by ryanodine, which blocks RyR, was observed. Besides, oscillatory responses were abolished by inhibitors of phosphatidylinositol 3-kinase, NO synthase, and cGMP-dependent protein kinase. FBS (1%) initiated oscillations characterized by return of [Ca2+]i after each peak to the baseline level, occurring prior to stimulation, and by maintenance of roughly constant amplitude and frequency (of the order of 1 min−1). Oscillations persisted longer (more than 15 min in 87% of cells) than with ACh. Repeated stimulation of cells by FBS revealed a strongly reduced sensitivity after 1 h of rest, whereas responses to ACh partially restored within 3 min. Investigation of the involvement of IP3R and RyR in FBS-induced oscillations gave completely inverse results relative to ACh and demonstrated a leading role of IP3R without a considerable contribution of RyR and of its activation pathways. With both stimuli, Ca2+ entry through the plasma membrane was necessary only as a support of oscillations. The results show that in adipocytes different agonists can engage distinct subsystems of Ca2+ signaling, each of them generating oscillations with a specific temporal pattern.  相似文献   

3.
Activity-dependent increase in cytosolic calcium ([Ca2+]i) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca2+ from ryanodine-sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca2+-release is not completely understood. In the present study, we optically recorded [Ca2+]i from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca2+ activities and depolarization-induced Ca2+ signals in order to determine the source(s) and properties of [Ca2+]i-dynamics that could lead to a release of Ca2+ from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously occurring miniature Ca2+ events were detected from a group of hippocampal neurons. This miniature Ca2+ event persisted in the nominal Ca2+-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca2+ channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca2+ events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca2+]i in the dendrosomal region. This [Ca2+]i-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca2+]i-transient was caused primarily by the LTCC-mediated Ca2+-influx and a release of Ca2+ from RyR. We observed little contribution from N- or P/Q-type Ca2+ channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC and RyR in a juxtaposed configuration in the proximal dendrites and soma. We conclude in the hippocampal CA1 neuron that: (1) homeostatic fluctuation of the resting membrane potential may be sufficient to initiate functional coupling between LTCC and RyR; (2) the juxtaposed localization of LTCC and RyR has anatomical advantage of synchronizing a Ca2+-release from RyR upon the opening of LTCC; and (3) the synchronized Ca2+-release from RyR occurs immediately after the activation of LTCC and determines the peak amplitude of depolarization-induced global increase in dendrosomal [Ca2+]i.  相似文献   

4.
Oocyte is arrested at metaphase of the second meiosis until fertilization switching on [Ca2+]i oscillations. Oocyte activation inefficiency is the most challenging problem for failed fertilization and embryonic development. Mitochondrial function and intracellular [Ca2+]i oscillations are two critical factors for the oocyte’s developmental potential. We aimed to understand the possible correlation between mitochondrial function and [Ca2+]i oscillations in oocytes. To this end, mitochondrial uncoupler CCCP which damages mitochondrial function and two small molecule mitochondrial agonists, L-carnitine (LC) and BGP-15, were used to examine the regulation of [Ca2+]i by mitochondrial functions. With increasing CCCP concentrations, [Ca2+]i oscillations were gradually diminished and high concentrations of CCCP led to oocyte death. LC enhanced mitochondrial membrane potential and [Ca2+]i oscillations and even improved the damage induced by CCCP, however, BGP-15 had no beneficial effect on oocyte activation. We have found that mitochondrial function plays a vital role in the generation of [Ca2+]i oscillations in oocytes, and thus mitochondria may interact with the ER to generate [Ca2+]i oscillations during oocyte activation. Improvement of mitochondrial functions with small molecules can be expected to improve oocyte activation and embryonic development in infertile patients without invasive micromanipulation.  相似文献   

5.
The present experiments were undertaken to investigate whether the procedure of intracytoplasmic sperm injection (ICSI) is associated with changes in the intracellular free calcium concentration ([Ca2+]i). [Ca2+]i was measured, using the calcium-sensitive dye fura-2, during and after impalement of mouse oocytes with an ICSI pipette and injection of a small amount of medium alone or of medium containing a normal human spermatozoon. Forty-five oocytes were injected with medium. Two different responses were observed: 20 of these cells showed a large increase of [Ca2+]i upon impalement; the other 25 cells did not show any change of [Ca2+]i, neither in the acute period nor in a late period 4 hr after impalement. All the cells that responded with an increase of [Ca2+]i subsequently lysed within the first 30 min following impalement, while all the cells with no [Ca2+]i change remained intact. This observation suggests that only traumatic impalement is associated with an increase of [Ca2+]i. Thirty-one oocytes were successfully, i.e., without subsequent cell lysis, injected with a normal mouse or human spermatozoon. In none of these cells could any acute or late change of [Ca2+]i be observed. The experiments illustrate that successful performance of the ICSI procedure, i.e., ICSI not followed by cell lysis, is not associated with changes of [Ca2+]i in mouse oocytes. This suggests that the ICSI technique, by itself, does not help in activating the oocyte via manipulation-induced changes of [Ca2+]i. © 1996 Wiley-Liss, Inc.  相似文献   

6.
7.
Phospholipase Cζ (PLCζ) is a sperm-specific PLC capable of causing repetitive intracellular Ca2+ ([Ca2+]i) release ([Ca2+]i oscillations) in mammalian eggs. Accumulating evidence suggests that PLCζ is the sperm factor responsible for inducing egg activation. Nevertheless, some sperm fractions devoid of 72-kDa PLCζ showed [Ca2+]i oscillation-inducing and PLCζ-like PLC activity (Kurokawa et al., (2005) Dev. Biol. 285, 376-392). Here, we report that PLCζ remains functional after proteolytic cleavage at the X-Y linker region. We found that N-terminal (33 and 37 kDa) and C-terminal fragments (27 kDa), presumably the result of PLCζ cleavage at the X-Y linker region, were present in fresh sperm as well as in sperm extracts and remained associated as functional complexes. Protease V8 cleaved 72-kDa PLCζ into 33/37 and 27 kDa fragments, while PLC activity and [Ca2+]i oscillation-inducing activity persisted until degradation of the fragments. Immunodepletion or affinity depletion of these fragments abolished PLC activity and [Ca2+]i oscillation-inducing activity from sperm extracts. Lastly, co-expression of cRNAs encoding residues 1-361 and 362-647 of mouse PLCζ, mimicking cleavage at the X-Y linker region, induced [Ca2+]i oscillations and embryo development in mouse eggs. Our results support the hypothesis that PLCζ is the sole mammalian sperm factor and that its linker region may have important regulatory functions during mammalian fertilization.  相似文献   

8.
In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca) recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2), or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA) (p<0.05, p<0.01, respectively). The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively). We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA) exhibited a significant decrease in IK,Ca (p<0.05) and [Ca2+]i fluorescence intensity (p<0.01). An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.  相似文献   

9.
Altered insulin secretion contributes to the pathogenesis of type 2 diabetes. This alteration is correlated with altered intracellular Ca2+-handling in pancreatic β cells. Insulin secretion is triggered by elevation in cytoplasmic Ca2+ concentration ([Ca2+]cyt) of β cells. This elevation in [Ca2+]cyt leads to activation of Ca2+/calmodulin-dependent protein kinase II (CAMKII), which, in turn, controls multiple aspects of insulin secretion. CaMKII is known to phosphorylate ryanodine receptor 2 (RyR2), an intracellular Ca2+-release channel implicated in Ca2+-dependent steps of insulin secretion. Our data show that RyR2 is CaMKII phosphorylated in a pancreatic β-cell line in a glucose-sensitive manner. However, it is not clear whether any change in CaMKII-mediated phosphorylation underlies abnormal RyR2 function in β cells and whether such a change contributes to alterations in insulin secretion. Therefore, knock-in mice with a mutation in RyR2 that mimics its constitutive CaMKII phosphorylation, RyR2-S2814D, were studied. This mutation led to a gain-of-function defect in RyR2 indicated by increased basal RyR2-mediated Ca2+ leak in islets of these mice. This chronic in vivo defect in RyR2 resulted in basal hyperinsulinemia. In addition, S2814D mice also developed glucose intolerance, impaired glucose-stimulated insulin secretion and lowered [Ca2+]cyt transients, which are hallmarks of pre-diabetes. The glucose-sensitive Ca2+ pool in islets from S2814D mice was also reduced. These observations were supported by immunohistochemical analyses of islets in diabetic human and mouse pancreata that revealed significantly enhanced CaMKII phosphorylation of RyR2 in type 2 diabetes. Together, these studies implicate that the chronic gain-of-function defect in RyR2 due to CaMKII hyperphosphorylation is a novel mechanism that contributes to pathogenesis of type 2 diabetes.  相似文献   

10.
Physiological mechanisms associated with interleukin-13 (IL-13), a key cytokine in asthma, in intracellular Ca2+ signaling in airway smooth muscle cells (ASMCs) remain unclear. The aim of this study was to assess effects of IL-13 on Ca2+ oscillations in response to leukotriene D4 (LTD4) in human cultured ASMCs.LTD4-induced Ca2+ oscillations in ASMCs pretreated with IL-13 were imaged by confocal microscopy. mRNA expressions of cysteinyl leukotriene 1 receptors (CysLT1R), CD38, involved with the ryanodine receptors (RyR) system, and transient receptor potential canonical (TRPC), involved with store-operated Ca2+ entry (SOCE), were determined by real-time PCR. In IL-13-pretreated ASMCs, frequency of LTD4-induced Ca2+ oscillations and number of oscillating cells were significantly increased compared with untreated ASMCs. Both xestospongin C, a specific inhibitor of inositol 1,4,5-triphosphate receptors (IP3R), and ryanodine or ruthenium red, inhibitors of RyR, partially blocked LTD4-induced Ca2+ oscillations. Ca2+ oscillations were almost completely inhibited by 50 μM of 2-aminoethoxydiphenyl borate (2-APB), which dominantly blocks SOCE but not IP3R at this concentration. Pretreatment with IL-13 increased the mRNA expressions of CysLT1R and CD38, but not of TRPC1 and TRPC3.We conclude that IL-13 enhances frequency of LTD4-induced Ca2+ oscillations in human ASMCs, which may be cooperatively modulated by IP3R, RyR systems and possibly by SOCE.  相似文献   

11.
In this study we evaluated nuclear and ooplasmic maturation of prepuberal calf oocytes to determine a possible cause for their low developmental competency. Calf oocytes resumed meiosis and arrested at the MII stage at rates similar to that of adult animals; however, zygotes derived from calf oocytes cleaved and developed at significantly lower rates. Ooplasmic maturation was assessed during oocyte maturation and fertilization. Transmission electron microscopy revealed that a majority of calf oocytes exhibited some delay in organelle migration and redistribution following maturation. Immunofluorescence microscopy showed that following IVF, a higher percentage of calf oocytes had abnormal chromatin and microtubule configurations than those of adult cattle. These anomalies were characterized by delayed formation of sperm aster and asynchronous pronuclear formation. Microfluorometry was used to characterize the Ca2+ responses of calf oocytes to the addition of agonists or after IVF. The addition of thimerosal demonstrated the presence of Ca2+ stores in calf oocytes. Injection of near threshold concentrations of inositol 1,4,5-trisphosphate (InsP3), used to test the sensitivity of the InsP3R, released significantly less Ca2+ in calf than in cow oocytes, whereas higher concentrations of InsP3 (500 μM) released maximal [Ca2+]i in both oocytes. These results suggested that the Ca2+ content of intracellular stores was similar, but the sensitivity of the InsP3R may be different. Following insemination, calf oocytes exhibiting [Ca2+]i oscillations displayed comparable amplitude and intervals to cow oocytes; however, a significantly higher number of fertilized calf oocytes failed to show oscillations. Our findings suggest that the low developmental competence of calf oocytes can be attributed, at least in part, to incomplete or delayed ooplasmic maturation. © 1996 Wiley-Liss, Inc.  相似文献   

12.
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca2+ homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca2+ concentration ([Ca2+]r) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca2+]r and lower caffeine EC50 than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca2+]r in RyR3-expressing cells, studies of [3H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca2+]r coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca2+]r than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca2+]r more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca2+]r in skeletal muscle. ryanodine receptor; calcium release; ryanodine binding; muscle fibers  相似文献   

13.
Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to clinical use, we examined the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment. We also determined the optimal concentration of human PLCZ1 RNA to activate the human oocytes. Our findings suggest that human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.  相似文献   

14.
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.  相似文献   

15.
The physiological function and the molecular mechanisms of Ca2+-mediated signal transduction processes were studied in the unicellular green alga Eremosphaera viridis by different electrophysiological and microfluorimetric techniques. A sudden blockage of photosynthetic electron transport by darkening or inhibitors causes a transient hyperpolarization of the plasma membrane. For the alga this transient hyperpolarization seems to be an important mechanism to release monovalent ions and to drive the uptake of divalent cations. The transient hyperpolarization is due to the opening of K+ channels and is caused by a rapid transient elevation of the cytosolic free Ca2+ concentration ([Ca2+]cy spike). Different agonists like caffeine or InsP3 which are known to release Ca2+ from internal stores in animal cells, also cause a transient hyperpolarization and a [Ca2+]cy spike, similar to darkening. In Eremosphaera the transient hyperpolarization can be used as an indicator for [Ca2+]cy spikes. The InsP3 gated and the ryanodine/cADPR gated Ca2+ channels which obviously both mediate Ca2+ release from internal stores in Eremosphaera do not seem to be involved in the dark-induced [Ca2+]cy spikes. Besides single [Ca2+]cy spikes, the addition of Sr2+ (or caffeine in the absence of divalent cations) causes repetitive [Ca2+]cy spikes which may last hours and resemble [Ca2+]cy oscillations observed in excitable animal cells. These observations suggest that some principal molecular mechanisms causing single or repetitive [Ca2+]cy spikes are conserved from animal to plant cells.  相似文献   

16.
In this study, we investigated the role of elevated sarcoplasmic reticulum (SR) Ca2+ leak through ryanodine receptors (RyR2s) in heart failure (HF)-related abnormalities of intracellular Ca2+ handling, using a canine model of chronic HF. The cytosolic Ca2+ transients were reduced in amplitude and slowed in duration in HF myocytes compared with control, changes paralleled by a dramatic reduction in the total SR Ca2+ content. Direct measurements of [Ca2+]SR in both intact and permeabilized cardiac myocytes demonstrated that SR luminal [Ca2+] is markedly lowered in HF, suggesting that alterations in Ca2+ transport rather than fractional SR volume reduction accounts for the diminished Ca2+ release capacity of SR in HF. SR Ca2+ ATPase (SERCA2)-mediated SR Ca2+ uptake rate was not significantly altered, and Na+/Ca2+ exchange activity was accelerated in HF myocytes. At the same time, SR Ca2+ leak, measured directly as a loss of [Ca2+]SR after inhibition of SERCA2 by thapsigargin, was markedly enhanced in HF myocytes. Moreover, the reduced [Ca2+]SR in HF myocytes could be nearly completely restored by the RyR2 channel blocker ruthenium red. The effects of HF on cytosolic and SR luminal Ca2+ signals could be reasonably well mimicked by the RyR2 channel agonist caffeine. Taken together, these results suggest that RyR2-mediated SR Ca2+ leak is a major factor in the abnormal intracellular Ca2+ handling that critically contributes to the reduced SR Ca2+ content of failing cardiomyocytes.  相似文献   

17.
Highly localized Ca2+ release events have been characterized in several neuronal preparations. In mouse neurohypophysial terminals (NHTs), such events, called Ca2+ syntillas, appear to emanate from a ryanodine-sensitive intracellular Ca2+ pool. Traditional sources of intracellular Ca2+ appear to be lacking in NHTs. Thus, we have tested the hypothesis that large dense core vesicles (LDCVs), which contain a substantial amount of calcium, represent the source of these syntillas. Here, using fluorescence immunolabeling and immunogold-labeled electron micrographs of NHTs, we show that type 2 ryanodine receptors (RyRs) are localized specifically to LDCVs. Furthermore, a large conductance nonspecific cation channel, which was identified previously in the vesicle membrane and has biophysical properties similar to that of an RyR, is pharmacologically affected in a manner characteristic of an RyR: it is activated in the presence of the RyR agonist ryanodine (at low concentrations) and blocked by the RyR antagonist ruthenium red. Additionally, neuropeptide release experiments show that these same RyR agonists and antagonists modulate Ca2+-elicited neuropeptide release from permeabilized NHTs. Furthermore, amperometric recording of spontaneous release events from artificial transmitter-loaded terminals corroborated these ryanodine effects. Collectively, our findings suggest that RyR-dependent syntillas could represent mobilization of Ca2+ from vesicular stores. Such localized vesicular Ca2+ release events at the precise location of exocytosis could provide a Ca2+ amplification mechanism capable of modulating neuropeptide release physiologically.  相似文献   

18.
The intracellular Ca2+ release channels are indispensable molecular machinery in practically all eukaryotic cells of multicellular animals. They serve a key role in cell signaling by way of Ca2+ as a second messenger. In response to a signaling event, the channels release Ca2+ from intracellular stores. The resulting rise in cytoplasmic Ca2+ concentration triggers the cell to carry out its specialized role, after which the intracellular Ca2+ concentration must be reduced so that the signaling event can again be repeated. There are two types of intracellular Ca2+ release channels, i.e., the ryanodine receptors and the inositol triphosphate receptors. My focus in this minireview is to present a personal account, from the vantage point our laboratory, of the discovery, isolation, and characterization of the ryanodine receptors from mammalian muscle. There are three isoforms: ryanodine receptor 1 (RyR1), first isolated from rabbit fast twitch skeletal muscle; ryanodine receptor 2 (RyR2), first isolated from dog heart; and ryanodine receptor 3 (RyR3), first isolated from bovine diaphragm muscle. The ryanodine receptors are the largest channel structures known. The RyR isoforms are very similar albeit with important differences. Natural mutations in humans in these receptors have already been associated with a number of muscle diseases.  相似文献   

19.
Ras-related small G-protein Rad plays a critical role in generating arrhythmias via regulation of the L-type Ca2+ channel (LTCC). The aim was to demonstrate the role of Rad in intracellular calcium homeostasis by cardiac-Specific dominant-negative suppression of Rad. Transgenic (TG) mice overexpressing dominant-negative mutant Rad (S105N Rad TG) were generated. To measure intracellular Ca2+ concentration ([Ca2+]i), we recorded [Ca2+]i transients and Ca2+ sparks from isolated cardiomyocytes using confocal microscopy. The mean [Ca2+]i transient amplitude was significantly increased in S105N Rad TG cardiomyocytes, compared with control littermate mouse cells. The frequency of Ca2+ sparks was also significantly higher in TG cells than in control cells, although there were no significant differences in amplitude. The sarcoplasmic reticulum Ca2+ content was not altered in the S105N Rad TG cells, as assessed by measuring caffeine-induced [Ca2+]i transient. In contrast, phosphorylation of Ser2809 on the cardiac ryanodine receptor (RyR2) was significantly enhanced in TG mouse hearts compared with controls. Additionally, the Rad-mediated RyR2 phosphorylation was regulated via a direct interaction of Rad with protein kinase A (PKA).  相似文献   

20.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered in susceptible individuals by inhalation anesthetics and depolarizing skeletal muscle relaxants. This syndrome has been linked to a missense mutation in the type 1 ryanodine receptor (RyR1) in more than 50% of cases studied to date. Using double-barreled Ca2+ microelectrodes in myotubes expressing wild-type RyR1 (WTRyR1) or RyR1 with one of four common MH mutations (MHRyR1), we measured resting intracellular Ca2+ concentration ([Ca2+]i). Changes in resting [Ca2+]i produced by several drugs known to modulate the RyR1 channel complex were investigated. We found that myotubes expressing any of the MHRyR1s had a 2.0- to 3.7-fold higher resting [Ca2+]i than those expressing WTRyR1. Exposure of myotubes expressing MHRyR1s to ryanodine (500 µM) or (2,6-dichloro-4-aminophenyl)isopropylamine (FLA 365; 20 µM) had no effects on their resting [Ca2+]i. However, when myotubes were exposed to bastadin 5 alone or to a combination of ryanodine and bastadin 5, the resting [Ca2+]i was significantly reduced (P < 0.01). Interestingly, the percent decrease in resting [Ca2+]i in myotubes expressing MHRyR1s was significantly greater than that for WTRyR1. From these data, we propose that the high resting myoplasmic [Ca2+]i in MHRyR1 expressing myotubes is due in part to a related structural conformation of MHRyR1s that favors "passive" calcium leak from the sarcoplasmic reticulum. ryanodine; FLA 365; bastadin 5; resting intracellular calcium concentration; sarcoplasmic reticulum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号