共查询到12条相似文献,搜索用时 5 毫秒
1.
Tagami T Kagami H Matsubara Y Harumi T Naito M Takeda K Hanada H Nirasawa K 《Molecular reproduction and development》2007,74(1):68-75
In our previous studies, we demonstrated that female primordial germ cells (PGCs) have the ability to differentiate into W chromosome-bearing (W-bearing) spermatozoa in male gonads of germline chimeric chickens. In this study, to investigate the differentiation pattern of female PGCs in male gonads in chickens, three germline chimeric chickens were generated by injecting female PGCs into the male recipient embryos. After these male chimeras reached sexual maturity, the semen samples were analyzed for detecting W-bearing cells by PCR and in situ hybridization analyses. The results indicated that the female PGCs had settled and differentiated in their testes. A histological analysis of the seminiferous tubule in those chimeras demonstrated that the W-bearing spermatogonia, spermatocytes, and round spermatids accounted for 30.8%, 32.7%, and 28.4%, respectively. However, the W-bearing elongating spermatid was markedly lower (7.7%) as compared to the W-bearing round spermatid. The W-bearing spermatozoa were hardly ever observed (0.2%). We concluded that although female PGCs in male gonads are capable of passing through the first and second meiotic division in adapting themselves to a male environment, they are hardly complete spermiogenesis. 相似文献
2.
Eihachiro Kawase Yasuaki Shirayoshi Koichiro Hashimoto Norio Nakatsuji 《Development, growth & differentiation》1996,38(3):315-322
Recent studies have shown that stem cell factor (SCF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and the enhancement of cAMP levels increase proliferation and survival of mouse primordial germ cells (PGC) in vitro . Even after the addition of these factors, however, it is still not possible to obtain proliferation of PGC at a rapid rate similar to that in vivo , suggesting the presenge of other growth factor(s) in vivo . We previously reported that tumor necrosis factor-α stimulates proliferation of PGC at earlier migration stages. We now show that the use of SI/SI4-m220 feeder cells and the addition of a medium conditioned with Buffalo rat liver cells and forskolin to the culture medium stimulate PGC obtained from 8.5 days post coitum embryos to proliferate in culture at a rate comparable to that in vivo . Under such conditions, proliferation of PGC continued several days past the timing of growth arrest in vivo ; however, it did stop afterwards. Such proliferating PGC continue to express c-kit and Oct-3 proteins. The characteristics of the culture medium and the requirement of feeder cells were different from those for embryonic stem (ES) cells, suggesting that these rapidly proliferated PGC are not transformed into ES-like EG cells. 相似文献
3.
Involvement of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) in the differentiation of primordial germ cells 总被引:1,自引:0,他引:1
In order to understand the role of the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) in germ line cells, an attempt was made to perturb the function of the protein with the anti-vasa antibody 2L-13. The 2L-13 or the control antibody was microinjected with a lineage tracer (FITC-dextran-lysine, FDL) into single vegetal blastomeres containing the germ plasm of Xenopus 32-cell embryos, the descendants of which were destined to differentiate into a small number of primordial germ cells (PGC) and a large number of somatic cells, mostly of endodermal tissues at the tadpole stage. No significant effect of the injection of the antibodies on FDL-labeled, presumptive PGC (pPGC) was observed in embryos until stage 37/38. However, FDL-labeled PGC were not observed in almost all the 2L-13 antibody-injected tadpoles, although a similar number of labeled somatic cells were always present. As 2L-13 antibody specifically reacts with XVLG1 protein in the embryos by immunoblotting, the present results suggest that the antibody perturbed the function of XVLG1 protein in the pPGC, resulting in failure of PGC differentiation at the tadpole stage. 相似文献
4.
Our understanding of the molecular mechanisms of primordial germ cell (PGC) proliferation in fish is rudimentary, but it is thought to be controlled by the surrounding somatic cells. We assumed that growth factors that are specifically involved in PGC proliferation are expressed predominantly in the surrounding genital ridge somatic cells. In order to isolate these growth factors, we compiled a complementary DNA (cDNA) subtractive library using cDNA from the genital ridges of 40-dpf rainbow trout embryos as the tester and cDNA from embryos without genital ridges as the driver. This approach identified a novel cytokine, designated gonadal soma-derived growth factor (GSDF), which is a member of the transforming growth factor (TGF)-beta superfamily. GSDF was expressed in the genital ridge somatic cells surrounding the PGCs during embryogenesis, and in both the granulosa and Sertoli cells at later stages. Inhibition of GSDF translation by antisense oligonucleotides suppressed PGC proliferation. Moreover, isolated testicular cells that were cultured with recombinant GSDF demonstrated dose-dependent proliferation of type-A spermatogonia; this effect was completely blocked by antiserum against GSDF. These results denote that GSDF, a novel member of the TGF-beta superfamily, plays an important role for proliferation of PGC and spermatogonia. 相似文献
5.
John B. Pawlak Melony J. Sellars Andrew Wood Philip L. Hertzler 《Development, growth & differentiation》2010,52(8):677-692
A previous study suggested that mesendoderm (ME) cell arrest occurred at the 64‐cell stage and a ring of eight presumptive naupliar mesoderm cells or crown cells surrounded the blastopore in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus. Since this varied from the pattern observed in other penaeoidean shrimp, cleavage and gastrulation was re‐examined in P. japonicus using the nucleic acid stain Sytox Green and confocal microscopy. In contrast to the earlier study, cleavage and gastrulation followed the pattern observed in other penaeoidean shrimp. The ME cells arrested at the 32‐cell stage, ingressed into the blastocoel, and resumed division after a three cell cycle delay. Nine naupliar mesoderm or crown cells surrounded the blastopore and their descendants invaginated during gastrulation. An intracellular body (ICB) was detected by Sytox Green and SYTO RNASelect staining to be segregated to one ME cell in P. japonicus, as described previously in Penaeus monodon. Staining of the ICB was eliminated by pre‐treatment with RNase but not DNase. The ICB was also found in two other penaeoidean shrimp, Penaeus vannamei (Family Penaeidae) and Sicyonia ingentis (Family Sicyoniidae). The results support the hypothesis that the ICB is a germ granule found in the Dendrobranchiata. 相似文献
6.
Members of the Pumilio (also called PUF) gene family belong to a class of highly conserved developmental regulators that are present in both flies and humans. Much is known about the function of Pumilio genes in invertebrate development, in particular their role as stem cell factors required for maintenance and/or self-renewal of germline stem cells in Drosophila and Caenorhabditis elegans. It remains unknown whether Pumilio genes are also required for development in mammals; however, several lines of evidence suggest similar functions based on extensive sequence homology, similar RNA-binding properties to their invertebrate counterparts and well-documented interactions with germ cell factors required for fertility. Here we report characterization of a gene trap mutation that disrupts the mouse Pumilio-2 (Pum2) gene. Our data confirm that Pumilio-2 is expressed most abundantly in germ cells with the highest expression in undifferentiated gonocytes and spermatogonia. Furthermore, the mutation in Pum2 results in significantly smaller testes although the mutants are otherwise viable and fertile. In addition, we observed no stronger reproductive defects on a genetic background homozygous for a Pum2 null mutation and heterozygous for a Dazl mutation than Pum2 mutant alone. Thus, as in C. elegans where single members of the Pumilio gene family are dispensable for reproductive development and viability, this individual member of the Pumilio gene family in mice is also not essential for reproduction or viability. 相似文献
7.
A factor that is released into the culture medium of mature adipocytes and promotes the differentiation (adipogenic conversion) of preadipocytes has been partially characterized. The factor acts in a dose-dependent manner on preadipocytes to produce up to a four-fold increase in triacylglycerol (triglyceride) content and a nine-fold increase in glycerol-3-phosphate dehydrogenase (GPDH) activity, a marker of the late phase of differentiation of preadipocytes. The material appears to be a protein, since it has a molecular weight (Superose-12 gel exclusion chromatography) of about 53 kDa, an isoelectric point (pl) of 4.7-4.9, and is inactivated by the proteases papain and chymotrypsin and extremes of pH (2 and 12). Considerations of molecular weight, isoelectric point, stability to specific proteases, and especially to the action of chemical agents [the adipogenic activity is not affected by either an oxidizing (KIO4) or a reducing agent (DTT)], lead to the conclusion that the differentiation factor is distinct from known cytokines. The authors suggest that the protein be designated adipocyte differentiation factor (ADF). ADF in vivo may act as a cytokine paracrine agent to regulate the differentiation of preadipocytes. 相似文献
8.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2 R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2 R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11 , 5-HT2 R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2 R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2 R-mediated FGFR2 transactivation in C6 cells. 相似文献
9.
Pharmacologic treatment of donor cells induced to have a Warburg effect‐like metabolism does not alter embryonic development in vitro or survival during early gestation when used in somatic cell nuclear transfer in pigs 下载免费PDF全文
Bethany R. Mordhorst Stephanie L. Murphy Renee M. Ross Joshua A. Benne Melissa S. Samuel Raissa F. Cecil Bethany K. Redel Lee D. Spate Clifton N. Murphy Kevin D. Wells Jonathan A. Green Randall S. Prather 《Molecular reproduction and development》2018,85(4):290-302
10.
11.
12.
Bareis P Kállay E Bischof MG Bises G Hofer H Pötzi C Manhardt T Bland R Cross HS 《Experimental cell research》2002,276(2):320-327
Human colon carcinoma cells express 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1alpha,25-dihydroxyvitamin D(3) (1,25-D3), which can be metabolized by 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF. 相似文献