首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of methotrexate (MTX) on the mitochondrial oxidation of cytosolic-reducing equivalents in HeLa cells was studied. MTX inhibited (100 per cent) malate dehydrogenase activity, but no effect was observed on that of GOT. MTX (0.5 mM) inhibited (100 per cent) the activity of reconstituted enzymatic system MDH-GOT, probably as a consequence of inhibition of malate dehydrogenase activity. MTX decreased pyruvate production (54 per cent), demonstrating its inhibitory action on the malate-aspartate shuttle. Blockage of the malate-aspartate shuttle by MTX accounts for the decrease in cellular energetic gain. The results obtained are consistent with the view that in HeLa cells, as well as in other tumour cells, the transport of reducing equivalents from cytoplasmic NADH into the respiratory chain of mitochondria is via the malate-aspartate shuttle.  相似文献   

2.
Goto-Kakizaki rats (GK rats) were given access for 4 weeks to a diet enriched with dehydroepiandrosterone (DHEA, 0·2 per cent, w/w). The incorporation of DHEA in the food failed to affect significantly body growth, plasma D -glucose and insulin concentrations, pancreatic islet insulin content or the activity of both mitochondrial glycerophosphate dehydrogenase (mGDH) and NADP-malate dehydrogenase (malic enzme) in islet homogenates. DHEA however, increased the activity of mGDH and, at least in male rates, that of the malic enzyme also in the liver. It lowered the abnormally high basal insulin release otherwise found in the islets from diabetic rats, and, as judged from the ratio of insulin output at 16·7 mM /2·8 mM D -glucose, improved the cell responsiveness to the hexose. This coincided with a decreased plasma insulin/D -glucose ratio, suggesting that the major effect of DHEA was to increase the sensitivity to insulin of extrapancreatic targets, thus resulting in a secondary improvement of cell secretory behaviour. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

4.
Chicken liver mitochondria were isolated in relatively pure form as indicated by electron microscopy and marker enzyme assay. The rate of respiration, respiratory control index and ADP/O ratios with several different substrates indicated that chicken liver mitochondria are more uncoupled than rat liver mitochondria. Chickens have ten-fold higher malate concentrations in liver than do rats, 2-oxoglutarate was also more abundant in chicken livers. Fasted birds had a five-fold increase in beta-hydroxybutyrate as compared with fed birds; whereas malate and lactate concentrations decreased. Fasted birds had increased levels of isocitrate dehydrogenase (NADP dependent) and lactate dehydrogenase in the cytosol, and increased malate dehydrogenase (NAD dependent), isocitrate dehydrogenase (NADP dependent) and malic enzyme activities in the mitochondria.  相似文献   

5.
We investigated the effects of calcium on the oxidative metabolism and steroidogenic activity of human term placental mitochondria. Submicromolar Ca(2+) concentrations stimulated state 3 oxygen consumption with 2-oxoglutarate and isocitrate and activated the 2-oxoglutarate and the NAD-isocitrate dehydrogenases by diminishing their Michaelis-Menten constants. Ca(2+) inhibited NADP-isocitrate dehydrogenase (NADP-ICDH) and the synthesis of progesterone. The NADP-ICDH maximal velocity was threefold higher than that of NAD-ICDH and had a threefold lower K(m) for isocitrate than NAD-ICDH. Isocitrate but not malate or 2-oxoglutarate supported progesterone synthesis. Calcium inhibition of progesterone synthesis was observed with isocitrate but not with malate or 2-oxoglutarate. Tight regulation of NADP-isocitrate dehydrogenase by calcium ions suggests that this enzyme plays an important role in placental mitochondrial metabolism.  相似文献   

6.
Succinate dehydrogenase activity was measured in rat pancreatic islet homogenates incubated in the presence of [1,4-14C]succinate, the reaction velocity being judged through the generation of 14CO2 in the auxiliary reactions catalysed by pig heart fumarase and chicken liver NADP-malate dehydrogenase. In the presence of 1·0 mM succinate, the reaction velocity averaged 5·53 ± 0·44 pmol min?1 μg?1 islet protein. The Km for succinate was close to 0·4 mM and the enzymic activity was restricted to mitochondria. These kinetic results indicate that, under the present experimental conditions, the activity of succinate dehydrogenase does not vastly exceed that of either NAD-isocitrate dehydrogenase or the 2-ketoglutarate dehydrogenase complex, at least when the latter enzymes are activated by ADP and/or Ca2+. Nevertheless, the activity of succinate dehydrogenase is sufficient to account for the increase in O2 uptake evoked in intact islets by the monomethyl ester of succinic acid. It could become a rate-limiting step of the Krebs cycle in models of B-cell dysfunction.  相似文献   

7.
Enalapril maleate (EM) is the salt of N-{(S)-1-(ethoxycarbonyl)-3-phenylpropyl}-L -alanyl-L -proline, used therapeutically as an anti-hypertensive agent. The effects of EM on some aspects of the energy metabolism and membrane properties of mitochondria from rat liver and kidney cortex were studied, but only the latter were significantly affected. With 0·8 mM of EM and 2-oxoglutarate as oxidizable substrate for isolated mitochondria from rat kidney cortex, the findings were: (a) inhibition of the respiratory rate in state III (37 per cent) and decrease (45 per cent) in respiratory control ratio (RCR), with only one addition of ADP; (b) reinforcement of the inhibition when a second addition of ADP was made; (c) no significant effect either on the rate of respiration in state IV or on the ADP/O ratio; (d) no effect on the ATPase activity of mitochondria from liver or kidney cortex; (e) inhibition of the transmembrane potential (Δψ) after a second addition of ADP; (f) inhibition of the 2-oxoglutarate dehydrogenase complex. It is suggested that in kidney mitochondria, EM interferes in the gluconeogenesis dependence of at least five substrates: 2-oxoglutarate, glutamine, glutamate, lactate, and pyruvate. Also EM may inhibit Na+/H+ exchange causing natriuresis.  相似文献   

8.
The only exogenous substrates oxidized by mitochondria isolated from the flight muscle of the Japanese beetle (Popillia japonica) are proline, pyruvate and glycerol 3-phosphate. The highest rate of oxygen consumption is obtained with proline. The oxidation of proline leads to the production of more NH3 than alanine, indicating a functioning glutamate dehydrogenase (EC 1.4.1.2). Studies of mitochondrial extracts confirm the presence of a very active glutamate dehydrogenase, and this enzyme is found to be activated by ADP and inhibited by ATP. These extracts also show high alanine aminotransferase activity (EC 2.6.1.2) and a uniquely active "malic'' enzyme (EC 1.1.1.39). The "malic'' enzyme is activated by succinate and inhibited by ATP and by pyruvate. It is suggested that the input of tricarboxylate-cycle intermediate from proline oxidation is balanced by the formation of pyruvate from malate, and the complete oxidation of the majority of the pyruvate. Studies of the steady-state concentrations of mitochondrial CoASH and CoA thioesters during proline oxidation show a high succinyl (3-carboxypropionyl)-CoA content which falls on activating respiration with ADP. There is a concomitant rise in CoASH. However, the reverse transition, from state-3 to state-4 respiration, causes only very slight changes in acylation. The reasons for this are discussed. Studies of the mitochondrial content of glutamate, 2-oxoglutarate, malate, pyruvate, citrate and isocitrate during the same phases of proline oxidation give results consistent with control at the level of glutamate dehydrogenase and isocitrate dehydrogenase during proline oxidation, with the possibility of further control at "malic'' enzyme. During the oxidation of pyruvate all of the tricarboxylate-cycle intermediates and NAD(P)H follow the pattern of changes described in the blowfly (Johnson & Hansford, 1975; Hansford, 1974) and isocitrate dehydrogenase is identified as the primary site of control.?2OAuthor  相似文献   

9.
The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.  相似文献   

10.
Mitochondria isolated from immature (developing), mature (unripe), and ripe mango pulp actively oxidized the intermediates of the Krebs cycle. The oxidation of citrate, oxoglutarate, succinate and malate by both unripe and ripe fruit mitochondria was several fold greater than that by mitochondria from immature fruit. The levels of malic dehydrogenase and succinic dehydrogenase increased with the onset of ripening, whereas the level of citrate synthase increased several fold on maturation but decreased six-fold on ripening. Isocitrate dehydrogenase and malic enzyme were very high in the immature fruit but after a sudden decrease in the matured fruit showed a considerable rise thereafter. The ratio of the activities of isocitrate lyase to isocitrate dehydrogenase is considerably higher in the immature fruit and greatest in the unripe (mature) fruit. This, together with a higher concentration of glyoxylate at these stages, indicate the operation of the glyoxylate bypass. Oxidized and reduced forms of pyridine nucleotides were estimated.  相似文献   

11.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

12.
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA tricarboxylic acid - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - APAD acetylpyridine adenine dinucleotide - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - DOC dissolved organic carbon  相似文献   

13.
Isocitrate dehydrogenase (IDH) activities were measured in mitochondria isolated from aerial parts of 21-day-old spruce (Picea abies L. Karst.) seedlings. Mitochondria were purified by two methods, involving continuous and discontinuous Percoll gradients. Whatever the method of purification, the mitochondrial outer membrane was about 69% intact, and the mitochondria contained very low cytosolic, chloroplastic and peroxisomal contaminations. Nevertheless, as judged by the recovery of fumarase activity, purification on a continuous 28% Percoll gradient gave the best yield in mitochondria, which exhibited a high degree of inner membrane intactness (91%). The purified mitochondria oxidized succinate and malate with good respiratory control and ADP/O ratios. The highest oxidation rate was obtained with succinate as substrate, and malate oxidation was improved (+ 60%) by addition of exogenous NAD+. Experiments using standard respiratory chain inhibitors indicated that, in spruce mitochondria, the alternative pathway was present. Both NAD+-isocitrate dehydrogenase (EC 1.1.1.41) and NADP+-isocitrate dehydrogenase (EC 1.1.1.42) were present in the mitochondrial matrix fraction, and NAD+-IDH activity was about 2-fold higher than NADP+-IDH activity. The NAD+-IDH showed sigmoidal kinetics in response to isocitrate and standard Michaelis-Menten kinetics for NAD+ and Mg2+. The NADP+-IDH, in contrast, displayed lower Km values. For NAD+-IDH the pH optimum was at 7.4, whereas NADP+-IDH exhibited a broad pH optimum between 8.3 and 9. In addition, NAD+-IDH was more thermolabile. Adenine nucleotides and 2-oxoglutarate were found to inhibit NAD(P)+-IDH activities only at high concentrations.  相似文献   

14.
The activities of insulin receptor and the enzymes hexokinase (EC 2.7.1.1) and NADP-dependent malic enzyme (EC1.1.1.40), glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and isocitrate dehydrogenase (EC 1.1.1.42) were measured in rat choroid plexus in alloxan induced diabetes. A significant decrease was observed in the activities of all the enzymes except isocitrate dehydrogenase and also the choroid plexus insulin receptor activity was decreased. A reversal of the efect was observed with insulin administration to diabetic rats. It may be concluded that the enzymes of choroid plexus together with insulin receptor are directly controlled by-the concentration of insulin.  相似文献   

15.
NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.  相似文献   

16.
Methylamine metabolism in a pseudomonas species   总被引:16,自引:0,他引:16  
The mechanism by which a nonphotosynthetic bacterium Pseudomonas sp. (Shaw Strain MA) grows on the one-carbon source, methylamine, was investigated by comparing enzyme levels of cells grown on methylamine, to cells grown on acetate or succinate. Cells grown on methylamine have elevated levels of the enzymes serine hydroxymethyl transferase, serine dehydratase, malic enzyme, glycerate dehydrogenase and malate lyase (CoA acetylating ATP-cleaving). These enzymes, in conjunction with a constitutive glyoxylate transaminase, can account for the net conversion of two one-carbon units into acetyl CoA. Cells grown on acetate or methylamine, but not succinate, contain the enzyme isocitrate lyase; while cells grown on acetate or succinate, but not methylamine, contain significant levels of malate synthetase. These findings suggest that the acetyl CoA derived from one-carbon units in methylamine grown cells, condenses with oxalacetate to yield citrate and then isocitrate, followed by cleavage to succinate and glyoxylate. Thus, growth on methylamine is accomplished by the net synthesis of succinate from two molecules of methyamine and two molecules of CO2.  相似文献   

17.
It has been demonstrated that perfusion of myocardium with glutamic acid or tricarboxylic acid cycle intermediates during hypoxia or ischemia, improves cardiac function, increases ATP levels, and stimulates succinate production. In this study isolated adult rat heart cells were used to investigate the mechanism of anaerobic succinate formation and examine beneficial effects attributed to ATP generated by this pathway. Myocytes incubated for 60 min under hypoxic conditions showed a slight loss of ATP from an initial value of 21 +/- 1 nmol/mg protein, a decline of CP from 42 to 17 nmol/mg protein and a fourfold increase in lactic acid production to 1.8 +/- 0.2 mumol/mg protein/h. These metabolite contents were not altered by the addition of malate and 2-oxoglutarate to the incubation medium nor were differences in cell viability observed; however, succinate release was substantially accelerated to 241 +/- 53 nmol/mg protein. Incubation of cells with [U-14C]malate or [2-U-14C]oxoglutarate indicates that succinate is formed directly from malate but not from 2-oxoglutarate. Moreover, anaerobic succinate formation was rotenone sensitive. We conclude that malate reduction to succinate occurs via the reverse action of succinate dehydrogenase in a coupled reaction where NADH is oxidized (and FAD reduced) and ADP is phosphorylated. Furthermore, by transaminating with aspartate to produce oxaloacetate, 2-oxoglutarate stimulates cytosolic malic dehydrogenase activity, whereby malate is formed and NADH is oxidized. In the form of malate, reducing equivalents and substrate are transported into the mitochondria where they are utilized for succinate synthesis.  相似文献   

18.
Abstract— The activity and subcellular distribution of NADP- and NAD-isocitrate de-hydrogenases (ICDH) (EC 1.1.1.42 and 1.1.1.41, respectively) in brains of adult and newborn mice have been determined. In the adult, NAD-ICDH activity in whole brain homogeantes was 1–17 mol/kg wet wt of brain/h (MKH), whereas the NADP-ICDH activity was 0.223 MKH. In the newborn, the activity of the NAD-dependent enzyme was only 0.246 MKH, whereas the NADP-dependent enzyme activity was 1.23 MKH. At both ages, 66 per cent of the NADP-ICDH activity was in the cytosol, less than 10 per cent was in the purified mitochondrial fraction and the remainder was in the crude synaptosomal fraction. Less than 10 per cent of the NAD-ICDH activity was in the cytosol in both the newborn and adult, whereas 50 per cent was in the purified mitochondrial fraction. The crude synaptosomal fraction from the newborn and adult brains contained 28 and 22 per cent, respectively, of the total NAD-ICDH activity. The activities of these enzymes in the cytosol and mitochondria were compared with those of succinate dehydrogenase and with three other enzymes which utilize the product, 2-oxoglutarate, as substrate. The relationship of the isocitrate dehydrogenases to the metabolism of adult and newborn brain is discussed.  相似文献   

19.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

20.
SYNOPSIS. Changes in the metabolism of Crithidia fasciculata ATCC 11745 when grown in the presence of ethidium bromide were studied. Ethidium bromide-grown cells had decreased respiratory activity as measured by oxygen consumption. More than 50% of the organisms cultivated in a defined medium containing 1.0 mg/liter of ethidium bromide became dyskine-toplastic and had decreased activities of particulate succinate and NADH-linked dehydrogenases as well as of soluble isocitrate dehydrogenase. These cells also had increased activities of particulate α-glycerophosphate dehydrogenase, soluble α-glycerophosphate dehydrogenase, malic enzyme, hexokinase, and malate dehydrogenase. Ethidium bromide-grown cells had a lower level of ATP and contained less DNA than cells grown in its absence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号