首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the equine, the zona pellucida (ZP) is the major barrier to successful in vitro fertilization. Therefore the aim of our studies was to analyze species-specific features of the equine ZP in regard to structure and glycoprotein ZPB and ZPC expression sites during oocyte development and embryogenesis. The equine ZP revealed high immunological cross-reactivity to porcine ZPB and ZPC. In the ovary, the distribution of ZPB and ZPC was co-localized and correlated with the developmental stage of the follicle. ZPB and ZPC expression started in the oocyte of the late primordial and primary follicle. In the secondary follicle, both the oocyte and the cumulus cells contributed to ZPB and ZPC synthesis. After in vivo maturation the oocyte stopped ZPB and ZPC production whereas the cumulus cells continued synthesis. Contrary, in vitro matured (IVM) cumulus-oocyte-complexes (COCs) revealed a reverse expression pattern. This was correlated to alterations in the distribution, number, and size of pores in the ZP. In the zona, N-acetylglucosamine residues were co-localized with ZPC. The acellular glycoprotein capsule surrounding early equine embryos was negative for ZPB and ZPC. Our results imply that in the horse ZPB and ZPC glycoprotein expression is differentially regulated during folliculogenesis, oocyte maturation, and embryogenesis. Contrary to the bovine and porcine, zona protein synthesis during in vivo maturation is completely overtaken by the cumulus cells implying that in the horse these cells are crucial for zona integrity. During IVM, the cumulus cells lose their ability to synthesize glycoproteins leading to alterations in the zona structure.  相似文献   

2.
Reproduction may be affected by stressful events changing the female endocrine or metabolic profile. An altered environment during oocyte development could influence the delicate process of oocyte maturation. Here, the effect of simulated stress by media supplementation with blood plasma from sows after adrenocorticotropic hormone (ACTH) administration during the preovulatory period was assessed. Oocytes were matured for 46 hours in the presence of plasma from ACTH-treated sows, or plasma from NaCl-treated control sows, or medium without plasma (BSA group). The plasma used had been collected at 36 and 12 hours (±2 hours) before ovulation (for the first 24 hours + last 22 hours of maturation, respectively). Subsequent fertilization and embryo development were evaluated. Actin cytoskeleton and mitochondrial patterns were studied by confocal microscopy both in the oocytes and the resulting blastocysts. Nuclear maturation did not differ between treatments. Subtle differences were observed in the actin microfilaments in oocytes; however, mitochondrial patterns were associated with the treatment (P < 0.001). These differences in mitochondrial patterns were not reflected by in vitro outcomes, which were similar in all groups. In conclusion, an altered hormonal environment provided by a brief exposure to plasma from ACTH-treated sows during in vitro oocyte maturation could induce alterations in actin cytoskeleton and mitochondrial patterns in oocytes. However, these changes might not hamper the subsequent in vitro embryo development.  相似文献   

3.
A transient increase in intracellular Ca2+ is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca2+ signal during oocyte maturation. The first Ca2+ transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau are poorly understood. We have recently shown that a critical determinant of Ca2+ signaling differentiation during oocyte maturation is internalization of the plasma membrane calcium ATPase (PMCA). PMCA internalization is representative of endocytosis of several integral membrane proteins during oocyte maturation, a requisite process for early embryogenesis. Here we investigate the mechanisms regulating PMCA internalization. To track PMCA trafficking in live cells we cloned a full-length cDNA of Xenopus PMCA1, and show that GFP-tagged PMCA traffics in a similar fashion to endogenous PMCA. Functional data show that MPF activation during oocyte maturation is required for full PMCA internalization. Pharmacological and co-localization studies argue that PMCA is internalized through a lipid raft endocytic pathway. Deletion analysis reveal a requirement for the N-terminal cytoplasmic domain for efficient internalization. Together these studies define the mechanistic requirements for PMCA internalization during oocyte maturation.  相似文献   

4.
5.
6.
Confocal laser scanning microscopy (CLSM) is a method allowing in situ visualization of protein transport in porous chromatography resins. CLSM requires labeling a protein with a fluorescent probe. Recent work has shown that conjugation of the protein with fluorescent probes can lead to significant changes in the retention time of the protein-dye conjugate with respect to the unlabeled protein. In this study, we show that common labeling procedures result in a heterogeneous mixture of different variants and that attachment location of the fluorescent probe on the protein surface can have a strong effect on the retention of protein-dye conjugate. Lysozyme was labeled with Cy5 and BODIPY-FL succinimidyl esters, followed by chromatographic separation of the different lysozyme-dye conjugates and subsequent determination of the label position using MALDI-TOF-MS. Finally, homogenously labeled lysozyme-dye conjugates were used in CLSM experimentation and compared to published results arising from heterogeneously labeled feedstocks. The results confirm that the attachment location of the fluorescent probe has a strong effect on chromatographic retention behavior. When addressing the binding affinities of the different labeled protein fractions, it was found that native lysozyme was able to displace lysozyme-dye conjugates when the fluorescent label was attached to lysine-33, but not when attached to lysine-97. Finally, it could be shown that when superimposing the single profiles of the three major fractions obtained during a labeling procedure a qualitative picture of the net profile is obtained.  相似文献   

7.
The localization and changes in microfilaments (MF) during golden hamster oocyte maturation were examined by an immunofluorescein method and confocal laser scanning microscopy (CLSM). We also studied the relationship between the changes in MF and oocyte nuclear and cytoplasmic maturation. During in vivo maturation, generalized submembranous MF were found initially which gradually became more prominent at the site of the first polar body extrusion. However, 43.7% of the in vitro matured metaphase 2 stage oocytes lacked the submembranous MF structure. This fact may partly account for the low fertilization rate of in vitro matured oocytes. MF were not found in the folicular oocytes cultured in cytochalasin-D-containing medium, and metaphase-like chromosomes were located at the center of the oocyte and first polar body extrusion did not occur. Twenty-five percent of the oocytes, which were arrested at meiosis by hypoxanthine, synthesized submembranous MF structure although the nuclear stage of these oocytes was germinal vesicle. These facts suggest that MF plays a role in nuclear behavior but there are some differences in the changes taking place within the nucleus and MF. MF may play a role in oocyte cytoplasmic maturation although the details of this have yet to be established. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
We have characterized plk1 in mouse oocytes during meiotic maturation and after parthenogenetic activation until entry into the first mitotic division. Plk1 protein expression remains unchanged during maturation. However, two different isoforms can be identified by SDS-PAGE. A fast migrating form, present in the germinal vesicle, seems characteristic of interphase. A slower form appears as early as 30 min before germinal vesicle breakdown (GVBD), is maximal at GVBD, and is maintained throughout meiotic maturation. This form gradually disappears after exit from meiosis. The slow form corresponds to a phosphorylation since it disappears after alkaline phosphatase treatment. Plk1 activation, therefore, takes place before GVBD and MAPK activation since plk1 kinase activity correlates with its slow migrating phosphorylated form. However, plk1 phosphorylation is inhibited after treatment with two specific p34(cdc2) inhibitors, roscovitine and butyrolactone, suggesting plk1 involvement in the MPF autoamplification loop. During meiosis plk1 undergoes a cellular redistribution consistent with its putative targets. At the germinal vesicle stage, plk1 is found diffusely distributed in the cytoplasm and enriched in the nucleus and during prometaphase is localized to the spindle poles. At anaphase it relocates to the equatorial plate and is restricted to the postmitotic bridge at telophase. After parthenogenetic activation, plk1 becomes dephosphorylated and its activity drops progressively. Upon entry into the first mitotic M-phase at nuclear envelope breakdown plk1 is phosphorylated and there is an increase in its kinase activity. At the two-cell stage, the fast migrating form with weak kinase activity is present. In this work we show that plk1 is present in mouse oocytes during meiotic maturation and the first mitotic division. The variation of plk1 activity and subcellular localization during this period suggest its implication in the organization and progression of M-phase.  相似文献   

10.
Spermiogenesis and posttesticular sperm maturation in the epididymis are distinct developmental processes that result in a polarized spermatozoon possessing a plasma membrane partitioned into segment-specific domains of distinct composition and function. The mechanisms that specify the distribution of intracellular organelles and target proteins to restricted membrane domains are not well understood. In this study we examined the expression pattern and distribution of protein farnesyltransferase (FTase) in hamster spermatids and epididymal spermatozoa to determine if protein lipidation may represent a potential mechanism to regulate protein association with specific organelles or the plasma membrane. Round spermatids exhibited only weak immunostaining with antibody against the β-subunit of FTase, whereas elongating spermatids exhibited a high level of FTase expression that was segregated to the cytoplasmic lobe surrounding the anterior flagellum. Although FTase was released with the residual body, mature spermatids retained FTase within the midpiece and cytoplasmic droplet. In epididymal spermatozoa, FTase remained associated with the cytoplasmic droplet during its migration to the midpiece-principal piece junction; following release of the cytoplasmic droplet, no immunodetectable FTase was noted in the midpiece segment. Immunoblotting demonstrated the presence of both the α and β subunits of FTase in sperm lysates. The temporal expression pattern and restricted distribution of FTase in spermatids and epididymal spermatozoa suggest a potential role in regulating protein association with specific organelles and/or membrane domains of the mature spermatozoon. Mol. Reprod. Dev. 48:71–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Polyclonal antibodies (IS1) reacting specifically with plasma membrane proteins of the Xenopus oocyte were used to study the formation of new plasma membrane in cleavage furrows. Membrane precursors were detected in the inner cytoplasm, then under the plasma membrane of the animal hemisphere and finally on the furrow's edges. Cycloheximide and colchicine caused abnormal distribution of stained material. IS1 antibodies conjugated to colloidal gold, were used to examine the local insertion of membrane precursors into the furrow region by electron microscopy. Membrane precursors were only detected in intracytoplasmic vesicles that fused with the plasma membrane at the edges of the furrow walls. Arrays of microtubules may guide membrane precursors to the site of their insertion in the furrow walls.  相似文献   

12.
Proteins modified by glycosylphosphatidylinositol membrane anchors have become popular for investigating the role of membrane lipid microdomains in cellular sorting processes. To this end, trypanosomatids offer the advantage that they express these molecules in high abundance. The parasitic protozoan Trypanosoma brucei is covered by a dense and nearly homogeneous coat composed of a glycosylphosphatidylinositol-anchored protein, the variant surface glycoprotein, which is essential for survival of the parasite in the mammalian blood. Therefore, T. brucei must possess mechanisms to selectively and efficiently deliver variant surface glycoprotein to the cell surface. In this study, we have quantified the steady-state distribution of variant surface glycoprotein by differential biotinylation, by fluorescence microscopy and by immunoelectron microscopy on high-pressure frozen and freeze-substituted samples. These three techniques provide very similar estimates of the fraction of variant surface glycoprotein located on the cell surface, on average 89.4%. The intracellular variant surface glycoprotein (10.6%) is predominantly located in the endosomal compartment (75%), while 25% are associated with the endoplasmic reticulum, Golgi apparatus and lysosomes. The density of variant surface glycoprotein in the plasma membrane including the membrane of the flagellar pocket, the only site for endo- and exocytosis in this organism, is 48-52 times higher than the density in endoplasmic reticulum membranes. The relative densities of the Golgi complex and of the endosomes are 2.7 and 10.8, respectively, compared to the endoplasmic reticulum. This data set provides the basis for an analysis of the dynamics of sorting. Depending on the intracellular itinerary of newly formed variant surface glycoprotein, the high surface density is achieved in two (endoplasmic reticulum --> Golgi complex --> cell surface) or three enrichment steps (endoplasmic reticulum --> Golgi complex --> endosomes --> cell surface), suggesting sorting between several membrane compartments.  相似文献   

13.
14.
We previously demonstrated that a protein of M(r) 75,000 (p75) is localized to cortical granules (CGs) in mouse oocytes and eggs and is released upon activation or fertilization of eggs (K.E. Pierce, M. C. Siebert, G. S. Kopf, R. M. Schultz, and P. G. Calarco, 1990, Dev. Biol. 141, 381-392). To examine the temporal pattern of synthesis of p75 during the early stages of CG formation, growing oocytes, which were isolated from juvenile mice, were incubated for 4 hr in medium containing [35S]methionine, and radiolabeled proteins were immunoprecipitated using an antiserum that detects p75. Synthesis of p75 is detected at low levels in the smallest oocytes examined (less than 20 microns). Synthesis of p75 relative to total protein synthesis increases about 12-fold during oocyte growth from the 20-40 microns size and then remains constant throughout the remaining period of oocyte growth (40-70 microns). In the fully grown, germinal vesicle (GV)-intact oocyte (70-80 microns), immunoprecipitated p75 comprises approximately 1.5% of the total amount of radiolabeled protein. Three hours after the transfer of these oocytes to a medium that supports resumption of meiosis and GV breakdown in vitro, oocytes subjected to a 1-hr labeling pulse display a 35% decrease in the relative level of p75 synthesis. By 15 hr of maturation, p75 synthesis was reduced to 14% of that in the fully grown, GV-intact oocyte and this is similar to the level of p75 synthesis in ovulated eggs. The level of p75 synthesis following in vitro translation of total egg RNA is only 38% lower than that obtained from total oocyte RNA. In addition, synthesis of p75 is observed following in vitro translation of oocyte, but not egg, poly(A)+ RNA. These results are consistent with p75 synthesis during oocyte maturation being under translational control.  相似文献   

15.
The Xenopus maternal mRNA D7 is translationally repressed during oogenesis, only becoming recruited into polysomes during oocyte maturation, with D7 protein being detectable for the first time prior to germinal vesicle breakdown (GVBD). The synthesis of D7 protein was found to be induced by a variety of maturation-promoting agents including cyclin, c-mos and crude preparations of MPF. D7 protein induced by all these agents is post-translationally modified and exists as a number of variants of differing molecular weight. In contrast to endogenous D7 mRNA, D7 RNA injected into the stage VI oocyte is efficiently translated, resulting in the accumulation of predominantly unmodified D7 polypeptides, which become increasingly modified during oocyte maturation to produce a pattern of polypeptides similar to those derived from endogenous D7 mRNA. Thus, the system that results in the post-translational modification of the D7 protein is itself activated during oocyte maturation. The nature of the protein modification is not known but does not appear to be phosphorylation. The translation of exogenous D7 RNA in the stage VI oocyte does not lead to translational derepression of endogenous D7 mRNA.  相似文献   

16.
The ultrastructural morphology of the mouse zona pellucida was studied in preovulatory follicles from the ovaries of immature mice treated with exogenous gonadotrophins. The ovaries were fixed in the presence of cetylpyridinium chloride, which precipitates carbohydrates, so that their loss during fixation and processing is substantially reduced. The semi-thin araldite sections obtained from osmicated material were viewed by conventional light microscopy, while the ultra-thin sections were examined by transmission electron microscopy. A parallel series of semi-thin sections of non-osmicated ovaries was deresined and subsequently stained with periodic acid Schiff (PAS). The morphological appearance of the zona pellucida in preovulatory oocytes changed during the final stages of oocyte maturation. A close correlation was observed between the ultrastructural appearance of the zona pellucida and that observed following PAS staining during the period studied. Real differences were observed in the location, density, and distribution of glycoconjugates within the zona pellucida during the final stages of oocyte maturation prior to and immediately following germinal vesicle breakdown. Similar changes in the zona were observed in adult females autopsied during proestrus and oestrus. The changes in the density and distribution of glycoconjugates are likely to have important consequences for fertilization by affecting sperm-zona binding and sperm-egg interactions.  相似文献   

17.
Dynamin-related GTPases regulate a wide variety of dynamic membrane processes in eukaryotes. Here, we investigated the function of ADL1C, a member of the Arabidopsis 68 kDa dynamin-like protein family. Analysis of heterozygous adl1C-1 indicates that the mutation specifically affects post-meiotic male gametogenesis. Fifty percent of the mature pollen from heterozygous adl1C-1 androecia are shriveled and fail to germinate in vitro. During microspore maturation, adl1C-1 pollen grains display defects in the plasma membrane and intine morphology, suggesting that ADL1C is essential for the formation and maintenance of the pollen cell surface and viability during desiccation. Consistent with a role in cell-surface dynamics, immunofluorescence microscopy indicates that ADL1C is localized to the cell plate of dividing somatic cells and to the tip of expanding root hairs. We propose that ADL1C functions in plasma membrane dynamics, and we discuss the role of the ADL1 family in plant growth and development.  相似文献   

18.
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest. © 1996 Wiley-Liss Inc.  相似文献   

19.
20.
We have characterized a serine/threonine protein kinase from Xenopus metaphase-II-blocked oocytes, which phosphorylates in vitro the microtubule-associated protein 2 (MAP2). The MAP2 kinase activity, undetectable in prophase oocytes, is activated during the progesterone-induced meiotic maturation (G2-M transition of the cell cycle). p-Nitrophenyl phosphate, a phosphatase inhibitor, is required to prevent spontaneous deactivation of the MAP2 kinase in crude preparations; conversely, the partially purified enzyme can be in vitro deactivated by the low-Mr polycation-stimulated (PCSL) phosphatase (also termed protein phosphatase 2A2), working as a phosphoserine/phosphothreonine-specific phosphatase and not as a phosphotyrosyl phosphatase indicating that phosphorylation of serine/threonine is necessary for its activity. S6 kinase, a protein kinase activated during oocyte maturation which phosphorylates in vitro ribosomal protein S6 and lamin C, can be deactivated in vitro by PCSL phosphatase. S6 kinase from prophase oocytes can also be activated in vitro in fractions known to contain all the factors necessary to convert pre-M-phase-promoting factor (pre-MPF) to MPF. Active MAP2 kinase can activate in vitro the inactive S6 kinase present in prophase oocytes or reactivate S6 kinase previously inactivated in vitro by PCSL phosphatase. These data are consistent with the hypothesis that the MAP2 kinase is a link of the meiosis signalling pathway and is activated by a serine/threonine kinase. This will lead to the regulation of further steps in the cell cycle, such as microtubular reorganisation and S6 kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号