共查询到20条相似文献,搜索用时 0 毫秒
1.
Cao N Liao J Liu Z Zhu W Wang J Liu L Yu L Xu P Cui C Xiao L Yang HT 《Cell research》2011,21(9):1316-1331
The recent breakthrough in the generation of rat embryonic stem cells (rESCs) opens the door to application of gene targeting to create models for the study of human diseases. In addition, the in vitro differentiation system from rESCs into derivatives of three germ layers will serve as a powerful tool and resource for the investigation of mammalian development, cell function, tissue repair, and drug discovery. However, these uses have been limited by the difficulty of in vitro differentiation. The aims of this study were to establish an in vitro differentiation system from rESCs and to investigate whether rESCs are capable of forming terminal-differentiated cardiomyocytes. Using newly established rESCs, we found that embryoid body (EB)-based method used in mouse ESC (mESC) differentiation failed to work for the serum-free cultivated rESCs. We then developed a protocol by combination of three chemical inhibitors and feeder-conditioned medium. Under this condition, rESCs formed EBs, propagated and differentiated into three embryonic germ layers. Moreover, rESC-formed EBs could differentiate into spontaneously beating cardiomyocytes after plating. Analyses of molecular, structural, and functional properties revealed that rESC-derived cardiomyocytes were similar to those derived from fetal rat hearts and mESCs. In conclusion, we successfully developed an in vitro differentiation system for rESCs through which functional myocytes were generated and displayed phenotypes of rat fetal cardiomyocytes. This unique cellular system will provide a new approach to study the early development and cardiac function, and serve as an important tool in pharmacological testing and cell therapy. 相似文献
2.
The very lysine-rich replacement histone variant H10 is found to be present in different murine (C1003, PC13, P19) and human (Tera-2) embryonal carcinoma cell lines. The proportion of H10 increases upon induction of differentiation of the different cell lines by various treatments. In undifferentiated PC13 EC cells H10 mRNA is present at a low level. During retinoic acid induced differentiation of mitotically synchronized PC13 EC cells, accumulation of H10 mRNA starts in the first cell cycle. The H10 protein level starts to increase in the second synchronous cycle preceding changes in the cycle parameters that become apparent in the third cycle. The results provide further support for an important role of H10 in the control of cellular differentiation in early mammalian development.Abbreviations EC
embryonal carcinoma
- RA
retinoic acid
- DAPT
4-6-diamino-2-phenylindole
- SDS
sodium dodecylsulphate
- DMSO
dimethyl sulfoxide
- TCA
trichloro acetic acid 相似文献
3.
Hossain MS Akimitsu N Kurokawa K Sekimizu K 《Differentiation; research in biological diversity》2003,71(4-5):271-280
Drosophila melanogaster has been widely used as a model organism to study various aspects of development. Apart from the whole Drosophila embryo, there are a number of cultured cell lines derived from Drosophila embryo that have also been used for elucidating various aspects of development. Drosophila Schneider line 2 cells were derived from the late stages of the embryo (Schneider, 1972). We found that the Schneider cells undergo myogenic differentiation upon treatment with neocarzinostatin (NCS), DNA double-strand break (DSB)-inducing drug, as indicated by elongated morphology, myosin heavy chain protein expression, multinucleation and exit from the cell cycle. No induction of differentiation was observed when cell proliferation was inhibited with drugs that do not cause DNA DSBs. Pre-treatment of Schneider cells with inhibitors of PKC, PP 1/2A, p38 MAPK, JNK and proteasomes resulted in the inhibition of morphological differentiation induced by NCS. These results indicate that DNA DSBs can turn on the myogenic program in Drosophila Schneider cells and the process is dependent on PK C-, PP 1/2A-, p38 MAPK-, and JNK- mediated signaling and proteasomal activity. The molting hormone, 20-hydroxyecdysone (20-HE), also showed an anti-myogenic effect on the process. This is the first report of insect cells undergoing differentiation by DNA DSB-inducing drugs as far as we know, and it provides a very useful and convenient in vitro system to study various aspects of Drosophila myogenesis. 相似文献
4.
Summary The embryonal carcinoma cell line P19 is derived from mouse teratocarcinomas. These pluripotent cells can be induced to differentiate
into a variety of cell types by exposure to various drugs. We used retinoic acid to induce embryonal carcinoma cells to differentiate
into neuronlike cells. In this study, we show that changes occur in mitochondria during differentiation of embryonal carcinoma
cells to neuronlike cells. We found that various morphologic parameters such as mitochondrial fractional area and mitochondrial
size decrease as embryonal carcinoma cells differentiate into neuronlike cells. Similar changes were also observed in mitochondrial
DNA content. Stereologic analysis of cell preparations provided a measure of mitochondrial fractional area per cell and mtDNA
content was assessed by radiolabeled mtDNA probe. This study establishes that mitochondria are regulated as cells differentiate.
This study was financially supported by the Medical Research Council of Canada. 相似文献
5.
6.
Alexandra Mayer Vladimir Baran Yogo Sakakibara Adela Brzakova Ivana Ferencova Jan Motlik 《Cell cycle (Georgetown, Tex.)》2016,15(4):546-558
Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II. Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation. 相似文献
7.
Matsukage S Kosugi I Kawasaski H Miura K Kitani H Tsutsui Y 《Birth defects research. Part A, Clinical and molecular teratology》2006,76(2):115-125
BACKGROUND: Cytomegalovirus (CMV) is the most significant infectious cause of congenital anomalies of the central nervous system caused by intrauterine infection in humans. The timing of infection and the susceptibility of cells in early gestational stages are not well understood. In this study we investigated the susceptibility of embryonic stem (ES) cells to CMV infection during differentiation. METHODS: ES cell lines were established from transgenic mice integrated with the murine CMV (MCMV) immediate-early (IE) promoter connected with a reporter lacZ gene. The susceptibility of the ES cells was analyzed in terms of viral gene expression and viral replication after induction of differentiation. RESULTS: ES cells were nonpermissive to MCMV infection in the undifferentiated state. Upon differentiation, permissive cells appeared approximately 2 weeks after the leukemia inhibitory factor was removed. Upon neural differentiation by retinoic acid (RA), glial cells showed specific susceptibility in terms of expression of the viral antigen. The MCMV IE promoter was not activated in ES cells from the transgenic mice. Activation of the IE promoter was detected approximately 2 weeks after induction of differentiation and observed predominantly in glial cells. Upon MCMV infection of the ES cells, viral infection was correlated with the activation of the IE promoter. CONCLUSIONS: ES cells are nonpermissive to MCMV infection and acquire permissiveness about 2 weeks after induction of differentiation, especially in glial cells. Acquisition of permissiveness in differentiated ES cells may be associated with activation of the IE promoter. 相似文献
8.
Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells 总被引:9,自引:0,他引:9
Retinoic acid (RA) is one of the most important morphogens, and its embryonic distribution correlates with neural differentiation and positional specification in the developing central nervous system. To investigate the concentration-dependent effects of RA on neural differentiation of mouse embryonic stem cells (ES cells), we investigated the precise expression profiles of neural and regional specific genes by ES cells aggregated into embryoid bodies (EBs) exposed to various concentrations of RA or the BMP antagonist Noggin. RA promoted both neural differentiation and caudalization in a concentration-dependent manner, and the concentration of RA was found to regulate dorso-ventral identity, i.e., higher concentrations of RA induced a dorsal phenotype, and lower concentrations of RA induced a more ventral phenotype. The induction of the more ventral phenotype was due to the higher expression level of the N-terminus of sonic hedgehog protein (Shh-N) when treated with low concentration RA, as it was abrogated by an inhibitor of Shh signaling, cyclopamine. These findings suggest that the concentration of RA strictly and simultaneously regulates the neuralization and positional specification during differentiation of mouse ES cells and that it may be possible to use it to establish a strategy for controlling the identity of ES-cell-derived neural cells. 相似文献
9.
Pluripotent mouse embryonic stem cells (mES cells) exhibit ∼ 100 large γH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (> 10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous γH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of γH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, γH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive γH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock. 相似文献
10.
Srivastava AS Kaushal S Mishra R Lane TA Carrier E 《Biochemical and biophysical research communications》2006,346(2):508-516
Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and, (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes (alpha-globin, betaH-1 globin, beta-major globin, epsilon -globin, and zeta-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, epsilon-globin, gamma-globin, betaH1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells. 相似文献
11.
Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential
下载免费PDF全文

Meili Zhang Li Cheng Yuyan Jia Guang Liu Cuiping Li Shuhui Song Allan Bradley Yue Huang 《The EMBO journal》2016,35(21):2285-2300
Aneuploidy leads to severe developmental defects in mammals and is also a hallmark of cancer. However, whether aneuploidy is a driving cause or a consequence of tumor formation remains controversial. Paradoxically, existing studies based on aneuploid yeast and mouse fibroblasts have shown that aneuploidy is usually detrimental to cellular fitness. Here, we examined the effects of aneuploidy on mouse embryonic stem (ES) cells by generating a series of cell lines that each carries an extra copy of single chromosomes, including trisomy 6, 8, 11, 12, or 15. Most of these aneuploid cell lines had rapid proliferation rates and enhanced colony formation efficiencies. They were less dependent on growth factors for self‐renewal and showed a reduced capacity to differentiate in vitro. Moreover, trisomic stem cells formed teratomas more efficiently, from which undifferentiated cells can be recovered. Further investigations demonstrated that co‐culture of wild‐type and aneuploid ES cells or supplementation with extracellular BMP4 rescues the differentiation defects of aneuploid ES cells. 相似文献
12.
Josluis Fernndez Asuncin Campos Vicente Goyanes Ismael Buo Jaime Goslvez 《Biology of the cell / under the auspices of the European Cell Biology Organization》1994,82(1):33-37
Summary— Chinese hamster DON cells with 5-bromodeoxyuridine (BrdU)-substituted chromosomes were ultraviolet (UV)-exposed and processed for in situ detection of induced DNA breaks under electron microscopy. For this purpose, UV-induced breaks were amplified by an exonuclease III digestion to obtain single stranded DNA motifs which could hybridize with oligonucleotides of random sequences. These reannealed motifs could be used as primers which were extended by the Klenow polymerase, incorporating biotinylated-dUTP that was detected by a gold-tagged streptavidin. After processing, the chromatid whose DNA was BrdU-substituted in one strand showed a higher electron density than the chromatid substituted in both strands. In contrast, the unifilarly substituted chromatid showed about twice the labelling of DNA breaks as the bifilarly substituted one. This result could be the consequence of a greater loss of chromatin tracts in the bifilarly substituted chromatid, as implied by an X-ray microanalysis which showed that the amount of phosphorous lost by the bifilarly substituted chromatid was higher than that of the unifilarly substituted chromatid. 相似文献
13.
Yuta Onodera Takeshi Teramura Madoka Ozawa Tasuku Mitani Masayuki Anzai Norimasa Sagawa Yoshihiko Hosoi 《Theriogenology》2010,74(1):135-145
Recent studies have illustrated multiple differentiation potentials of embryonic stem cells (ESCs), derived from parthenogenetic embryos, to various kinds of cells (all three embryonic germ layers). However, differentiation diversity of the parthenogenetic ESCs (PgESCs) in vivo remains to be elucidated. In the present study, we established mouse PgESC-lines and observed their contribution diversity in vivo by producing chimeric mice using embryos possessing single nucleotide polymorphisms of mitochondrial DNA (mtDNA) as hosts. Based on southern blot analysis using specific probes to detect the SNPs on mtDNA, PgESC-derived mtDNA were contained in many organs such as brain, lung, and heart of the chimeric mouse. We concluded that PgESCs contributed to various internal organs in vivo, and that they were also stably maintained in adult animals. 相似文献
14.
Jin Zhou Ye Zhang Qiuxia Lin Zhiqiang Liu Haibin Wang Cuimi Duan Yanmeng Wang Tong Hao Kuiwu Wu Changyong Wang 《遗传学报》2010,37(7):451-460
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture,they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formarion and their subsequent differentiation in a single three dimensional environment. 相似文献
15.
Saswati Banerjee 《Experimental cell research》2010,316(2):172-412
Understanding endothelial cell (EC) differentiation is a step forward in tissue engineering, controlling angiogenesis, and endothelial dysfunction. We hypothesized that epigenetic activation of EC lineage specification genes is an important mediator of embryonic stem cell (ESC) differentiation into EC. Mouse ESC was differentiated by removing leukemia inhibitory factor (LIF) from the maintenance media in the presence or absence of the specific DNA methyltransferase (DNMT) inhibitor 5′-aza-2′-deoxycytidine (aza-dC). Expression of EC specification and marker genes was monitored by quantitative PCR, western, immunocytochemistry, and flow cytometry. Functionality of differentiated EC was assessed by angiogenesis assay. The methylation status in the proximal promoter CpGs of the mediators of EC differentiation VEGF-A, BMP4, and EPAS-1 as well as of the mature EC marker VE-cadherin was determined by bisulfite sequencing. ESC differentiation resulted in repression of OCT4 expression in both the absence and presence of aza-dC treatment. However, significant increase in angiogenesis and expression of the mediators of EC differentiation and EC-specific genes was only observed in aza-dC-treated cells. The DNMT inhibition-mediated increase in EC specification and marker gene expression was not associated with demethylation of these genes. These studies suggest that DNMT inhibition is an efficient inducer of EC differentiation from ESC. 相似文献
16.
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time. 相似文献
17.
In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes 总被引:3,自引:0,他引:3
Ishii T Yasuchika K Fujii H Hoppo T Baba S Naito M Machimoto T Kamo N Suemori H Nakatsuji N Ikai I 《Experimental cell research》2005,309(1):68-77
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes. 相似文献
18.
19.
We succeeded in the derivation and maintenance of pluripotent embryonic stem (ES) cells from equine and bovine blastocysts. These cells expressed markers that are characteristics of mouse ES cells, namely, alkaline phosphatase, stage-specific embryonic antigen 1, STAT 3 and Oct 4. We confirmed the pluripotential ability of these cells, which were able to undergo somatic differentiation in vitro to neural progenitors and to endothelial or hematopoietic lineages. We were able to use bovine ES cells as a source of nuclei for nuclear transfer and we generated cloned cattle with a higher frequency of pregnancies to term than has been achieved with somatic cells. On the other hand, we established human fetal membrane derived stem cell lines by the colonial cloning techniques using MEMalpha culture medium containing 10 ng/ml of EGF, 10 ng/ml of LIF and 10% fetal bovine serum (FBS). These cells appeared to maintain normal karyotype in vitro and expressed markers characteristics of stem cells. Furthermore, these cells contributed to the formation of chimeric murine embryoid bodies and gave rise to all three germ layers in vitro. Results from animal ES cells and human fetal membrane derived stem cells clearly demonstrate that these cells might be used for providing different types of cells for regenerative medicine as well as used for targeted genetic manipulation of the genome. 相似文献
20.
Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation 总被引:1,自引:0,他引:1
Noriko Yamano Shoko Watanabe-Kushima Toru Nakano 《Biochemical and biophysical research communications》2010,392(3):311-60
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs. 相似文献