首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation of the wall shear stress distribution downstream of a backward-facing step is carried out. The wall shear stress distribution was determined by measuring the deformation of a gel layer, attached to the wall downstream of the step. Speckle pattern interferometry was applied to measure the deformation of the gel layer. The measured deformation, combined with the properties of the gel layer, served as an input for a finite element solid mechanics computation to determine the stress distribution in the gel layer. The wall shear stress, required to generate the measured deformation of the gel layer, was determined from these computations. A Newtonian buffer solution and a non-Newtonian red blood cell suspension were used as measuring fluids. The deformation of the gel layer was determined for a Newtonian buffer solution to evaluate the method and to obtain the properties of the gel layer. Subsequently, the wall shear stress distribution for the non-Newtonian red blood cell suspension was determined for three different flow rates. The inelastic non-Newtonian Carreau-Yasuda model served as constitutive model for the red blood cell suspension. Using this model, the velocity and wall shear stress distribution were computed by means of a finite element fluid mechanics computation. From the comparison between the numerical and the experimental results, it can be concluded that wall shear stresses, induced by the red blood cell suspension, can be modeled accurately by employing a Carreau-Yasuda model.  相似文献   

2.
Das B  Johnson PC  Popel AS 《Biorheology》1998,35(1):69-87
Hematocrit distribution and red blood cell aggregation are the major determinants of blood flow in narrow tubes at low flow rates. It has been observed experimentally that in microcirculation the hematocrit distribution is not uniform. This nonuniformity may result from plasma skimming and cell screening effects and also from red cell sedimentation. The goal of the present study is to understand the effect of nonaxisymmetric hematocrit distribution on the flow of human and cat blood in small blood vessels of the microcirculation. Blood vessels are modeled as circular cylindrical tubes. Human blood is described by Quemada's rheological model, in which local viscosity is a function of both the local hematocrit and a structural parameter that is related to the size of red blood cell aggregates. Cat blood is described by Casson's model. Eccentric hematocrit distribution is considered such that the axis of the cylindrical core region of red cell suspension is parallel to the axis of the blood vessel but not coincident. The problem is solved numerically by using finite element method. The calculations predict nonaxisymmetric distribution of velocity and shear stress in the blood vessel and the increase of apparent viscosity with increasing eccentricity of the core.  相似文献   

3.
Hemodynamic characteristics of blood flow through arterial stenoses are numerically investigated in this work. The blood is assumed as a Newtonian fluid and the pulsatile nature of flow is modeled by using measured values of the flowrate and pressure for the canine femoral artery. An isotropic elastic and incompressible material is assumed for the wall at each axial section, but a non-uniform distribution of the shear modulus in axial direction is used to model the high stiffness of the wall at the stenosis location. Full Navier equations for a thick wall are used as the governing equations for the wall displacements. A continuous grid extending over the flow field and the wall is considered and governing equations are transformed for use in the computational domain. Discretized forms of the transformed wall and flow equations, which are coupled through the boundary conditions at their interface, are obtained by control volume method and simultaneously solved using the well-known SIMPLER algorithm. To study the effects of wall deformability, solutions are obtained for both rigid and elastic walls. The results indicate that deformability of the wall causes an increase in the time average of pressure drop, but a decrease in the maximum wall shear stress. Displacement and stress distributions in the wall are presented.  相似文献   

4.
Aortic dissection and atherosclerosis are highly fatal diseases. The development of both diseases is closely associated with highly complex haemodynamics. Thus, in predicting the onset of cardiac disease, it is desirable to obtain a detailed understanding of the flowfield characteristics in the human cardiovascular circulatory system. Accordingly, in this study, a numerical model of a normal human thoracic aorta is constructed using the geometry information obtained from a phase-contrast magnetic resonance imaging (PC-MRI) technique. The interaction between the blood flow and the vessel wall dynamics is then investigated using a coupled fluid–structure interaction (FSI) analysis. The simulations focus specifically on the flowfield characteristics and pulse wave velocity (PWV) of the blood flow. Instead of using a conventional PC-MRI method to measure PWV, we present an innovative application of using the FSI approach to numerically resolve PWV for the assessment of wall compliance in a thoracic aorta model. The estimated PWV for a normal thoracic aorta agrees well with the results obtained via PC-MRI measurement. In addition, simulations which consider the FSI effect yield a lower predicted value of the wall shear stress at certain locations in the cardiac cycle than models which assume a rigid vessel wall. Consequently, the model provides a suitable basis for the future development of more sophisticated methods capable of performing the computer-aided analysis of aortic blood flows.  相似文献   

5.
P Chaturani  R P Samy 《Biorheology》1986,23(5):499-511
The effects of non-Newtonian nature of blood and pulsatility on flow through a stenosed tube have been investigated. A perturbation method is used to analyse the flow. It is of interest to note that the thickness of the viscous flow region is non-uniform (changing with axial distance). An analytic relation between viscous flow region thickness and red cell concentration has been obtained. It is important to mention that some researchers have obtained an approximate solution for the flow rate-pressure gradient equation (assuming the ratio between the yield stress and the wall shear to be very small in comparison to unity); in the present analysis, we have obtained an exact solution for this non-linear equation without making that assumption. The approximate and exact solutions compare well with one of the exact solutions. Another important result is that the mean and steady flow rates decrease as the yield stress theta increases. For the low values of the yield stress, the mean flow rate is higher than the steady flow rate, but for high values of the yield stress, the mean flow rate behaviour is of opposite nature. The critical value of the yield stress at which the flow rate behaviour changes from one type to another has been determined. Further, it seems that there exists a value of the yield stress at which flow stops for both the flows (steady and pulsatile). It is observed that the flow stop yield value for pulsatile flow is lower than the steady flow. The most notable result of pulsatility is the phase lag between the pressure gradient and flow rate, which is further influenced by the yield stress and stenosis. Another important result of pulsatility is the mean resistance to flow is greater than its steady flow value, whereas the mean value of the wall shear for pulsatile flow is equal to steady wall shear. Many standard results regarding Casson and Newtonian fluids flow, uniform tube flow and steady flow can be obtained as the special cases of the present analysis. Finally, some applications of this theoretical analysis have been cited.  相似文献   

6.
A recent whole organ study in cat skeletal muscle showed that the increase in venous resistance seen at reduced arterial pressures is nearly abolished when the muscle is perfused with a nonaggregating red blood cell suspension. To explore a possible underlying mechanism, we tested the hypothesis that red blood cell aggregation alters flow patterns in vivo and leads to blunted red blood cell velocity profiles at reduced shear rates. With the use of fluorescently labeled red blood cells in tracer quantities and a video system equipped with a gated image intensifier, we obtained velocity profiles in venous microvessels (45-75 microm) of rat spinotrapezius muscle at centerline velocities between 0.3 and 14 mm/s (pseudoshear rates 3-120 s(-1)) under normal (nonaggregating) conditions and after induction of red blood cell aggregation with Dextran 500. Profiles are nearly parabolic (Poiseuille flow) over this flow rate range in the absence of aggregation. When aggregation is present, profiles are parabolic at high shear rates and become significantly blunted at pseudoshear rates of 40 s(-1) and below. These results indicate a possible mechanism for increased venous resistance at reduced flows.  相似文献   

7.
Mesoscale simulation of blood flow in small vessels   总被引:1,自引:0,他引:1       下载免费PDF全文
Bagchi P 《Biophysical journal》2007,92(6):1858-1877
Computational modeling of blood flow in microvessels with internal diameter 20-500 microm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20-300 microm at discharge hematocrit of 10-60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation.  相似文献   

8.
S Noji  F Inoue  H Kon 《Blood cells》1981,7(2):401-415
A spin labeling method in electron spin resonance spectroscopy (ESR) is applied for the first time to study the deformability of human red blood cells (RBC). ESR measurements of a RBC suspension incubated with a fatty acid spin label were performed, using a narrow-gap flat ESR sample cell under various flow shear stresses (tau). Remarkable changes were observed in ESR spectra with tau, indicating that RBC are oriented in such a way that the greater part of the membrane surface is aligned parallel to the ESR cell walls. The diamide-treated, hardened RBC, in which the biconcave discoid shape remains intact under no shear stress, exhibit a smaller ESR spectral change with tau than the intact, demonstrating that the present method can be used to assess the deformation of RBC occurring with flow orientation. In particular, the relative amplitude of an ESR difference spectrum may be used as a measure of the elongation of RBC. The conclusion is further supported by experiments using glutaraldehyde-treated or heat-denatured RBC. All these ESR results are in good agreement with the corresponding results obtained by several different methods. The present spin labeling technique is thus proven to be applicable for evaluating RBC deformability.  相似文献   

9.
The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier–Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.  相似文献   

10.
The microcirculation state was assessed in the group of patients with ischemic stroke (n = 30) and the control group of healthy individuals (n = 27) using laser Doppler flowmetry and the wavelet analysis of the amplitude-frequency range of microvascular blood flow oscillations combined with absorption spectroscopy. The hemorheological parameters (blood and plasma viscosity, the degree of red blood cell aggregability and deformability) were assessed in both groups, as were their correlations with the microcirculation parameters. Decreased tissue perfusion (by 25%) and specific oxygen consumption (by 21%) were revealed in a cerebrovascular accident. Changes in the tone-forming regulatory mechanisms of microcirculation of vasodilating nature (decreased microvascular tone, activation of the secretory function of endothelium) may be regarded as a compensatory reaction aimed at maintaining the blood supply of organs and tissues in stroke. The blood viscosity increase in patients due to the plasma viscosity increase and increased red blood cell aggregability and their decreased deformability cause the blood flow to slow down and the wall shear stress to increase, which activates the endothelial secretory function and vasodilation of microvessels. Correlation between the rheological parameters and the passive (respiratory and cardiac) rhythm amplitudes was observed in the control group. In patients, the hemorheological parameters were correlated with the characteristics of the active factors of microvascular blood flow modulation (endothelial, neurogenic, and myogenic), which confirms the role of changed blood properties and regulatory tone-forming mechanisms in the maintenance of tissue perfusion in cerbrovascular accidents.  相似文献   

11.
The binding of circulating cells to the vascular wall is a central process in inflammation, metastasis, and therapeutic cell delivery. Previous in vitro studies have identified the adhesion molecules on various circulating cells and the endothelium that govern the process under static conditions. Other studies have attempted to simulate in vivo conditions by subjecting adherent cells to shear stress as they interact with the endothelial cells in vitro. These experiments are generally performed with the cells suspended in Newtonian solutions. However, in vivo conditions are more complex because of the non-Newtonian flow of blood, which is a suspension consisting of 20-40% erythrocytes by volume. The forces imparted by the erythrocytes in the flow can contribute to the process of cell adhesion. A number of experimental and theoretical studies have suggested that the rheology of blood can influence the binding of circulating leukocytes by increasing the normal and axial forces on leukocytes or the frequency of their collision with the vessel wall, but there have been no systematic investigations of these phenomena to date. The present study quantifies the contribution of red blood cells (RBCs) in cell capture and adhesion to endothelial monolayers using a combination of mathematical modeling and in vitro studies. Mathematical modeling of the flow experiments suggested a physical mechanism involving RBC-induced leukocyte dispersion and/or increased normal adhesive contact. Flow chamber studies performed with and without RBCs in the suspending medium showed increases in wall collision and binding frequencies, and a decrease in rolling velocity in the presence of erythrocytes. Increased fluid viscosity alone did not influence the binding frequency, and the differences could not be attributed to large near-wall excesses of the lymphocytes. The results indicate that RBCs aid in the transport and initial engagement of lymphocytes to the vascular wall, modifying the existing paradigm for immune cell surveillance of the vascular endothelium by adding the erythrocyte as an essential contributor to this process.  相似文献   

12.
Pulsatile flow in a model of a right coronary artery (RCA) was previously modeled as a single-phase fluid and as a two-phase fluid using experimental rheological data for blood as a function of hematocrit and shear rate. Here we present a multiphase kinetic theory model which has been shown to compute correctly the viscosity of red blood cells (RBCs) and their migration away from vessel walls: the Fahraeus–Lindqvist effect. The computed RBC viscosity decreases with shear rate and vessel size, consistent with measurements. The pulsatile computations were performed using a typical cardiac waveform until a limit cycle was well established. The RBC volume fractions, shear stresses, shear stress gradients, granular temperatures, viscosities, and phase velocities varied with time and position during each cardiac cycle. Steady-state computations were also performed and were found to compare well with time-averaged transient results. The wall shear stress and wall shear stress gradients (both spatial and temporal) were found to be highest on the inside area of maximum curvature. Potential atherosclerosis sites are identified using these computational results.  相似文献   

13.
In this study, a three-dimensional analysis of the non-Newtonian blood flow was carried out in the left coronary bifurcation. The Casson model and hyperelastic and rigid models were used as the constitutive equation for blood flow and vessel wall model, respectively. Physiological conditions were considered first normal and then compliant with hypertension disease with the aim of evaluating hemodynamic parameters and a better understanding of the onset and progression of atherosclerosis plaques in the coronary artery bifurcation. Two-way fluid–structure interaction method applying a fully implicit second-order backward Euler differencing scheme has been used which is performed in the commercial code ANSYS and ANSYS CFX (version 15.0). When artery deformations and blood pressure are associated, arbitrary Lagrangian–Eulerian formulation is employed to calculate the artery domain response using the temporal blood response. As a result of bifurcation, noticeable velocity reduction and backflow formation decrease shear stress and made it oscillatory at the starting point of the LCx branch which caused the shear stress to be less than 1 and 2 Pa in the LCx and the LAD branches, respectively. Oscillatory shear index (OSI) as a hemodynamic parameter represents the increase in residence time and oscillatory wall shear stress. Because of using the ideal 3D geometry and realistic physiological conditions, the values obtained for shear stress are more accurate than the previous studies. Comparing the results of this study with previous clinical investigations shows that the regions with low wall shear stress less than 1.20 Pa and with high OSI value more than 0.3 are in more potential risk to the atherosclerosis plaque development, especially in the posterior after the bifurcation.  相似文献   

14.
Numerical analysis of flow phenomena and wall shear stresses in the human carotid artery bifurcation has been carried out using a three-dimensional geometrical model. The primary aim of this study is the detailed discussion of non-Newtonian flow velocity and wall shear stress during the pulse cycle. A comparison of non-Newtonian and Newtonian results is also presented. The applied non-Newtonian behavior of blood is based on measured dynamic viscosity. In the foreground of discussion are the flow characteristics in the carotid sinus. The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase. The changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle. At the outer wall of the sinus at maximum diameter level the shear stress ranges from -1.92 N/m2 to 1.22 N/m2 with a time-averaged value of 0.04 N/m2. At the inner wall of the sinus at maximum diameter level the shear stress range is from 1.16 N/m2 to 4.18 N/m2 with a mean of 1.97 N/m2. The comparison of non-Newtonian and Newtonian results indicates unchanged flow phenomena and rather minor differences in the basic flow characteristics.  相似文献   

15.
P Sinha  C Singh 《Biorheology》1984,21(3):303-315
An analysis of the effects of couple stresses on the blood flow through thin artery in the presence of very mild stenosis has been carried out with the help of two nondimensional parameters, alpha (the length ratio parameter) and eta (the parameter characterizing the antisymmetric property of the couple stress tensor). It is shown that an increase in the couple stress (small value of alpha and eta), increases the resistance to the flow and the wall shear stress. These characteristics are further enhanced by the presence of the stenosis.  相似文献   

16.
The pulsatile flow in an anatomically realistic compliant human carotid bifurcation was simulated numerically. Pressure and mass flow waveforms in the carotid arteries were obtained from an individual subject using non-invasive techniques. The geometry of the computational model was reconstructed from magnetic resonance angiograms. Maps of time-average wall shear stress, contours of velocity in the flow field as well as wall movement and tensile stress on the arterial wall are all presented. Inconsistent with previous findings from idealised geometry models, flow in the carotid sinus is dominated by a strong helical flow accompanied by a single secondary vortex motion. This type of flow is induced primarily by the asymmetry and curvature of the in vivo geometry. Flow simulations have been carried out under the rigid wall assumption and for the compliant wall, respectively. Comparison of the results demonstrates the quantitative influence of the vessel wall motion. Generally there is a reduction in the magnitude of wall shear stress, with its degree depending on location and phase of the cardiac cycle. The region of slow or reversed flow was greater, in both spatial and temporal terms in the compliant model, but the global characteristics of the flow and stress patterns remain unchanged. The analysis of mechanical stresses on the vessel surface shows a complicated stress field. Stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb. These are also regions of low wall shear stress. The comparison of computed and measured wall movement generally shows good agreement.  相似文献   

17.
A novel multi-component model is introduced for studying interaction between blood flow and deforming aortic wall with intramural hematoma (IMH). The aortic wall is simulated by a composite structure submodel representing material properties of the three main wall layers. The IMH is described by a poroelasticity submodel which takes into account both the pressure inside hematoma and its deformation. The submodel of the hematoma is fully coupled with the aortic submodel as well as with the submodel of the pulsatile blood flow. Model simulations are used to investigate the relation between the peak wall stress, hematoma thickness and permeability in patients of different age. The results indicate that an increase in hematoma thickness leads to larger wall stress, which is in agreement with clinical data. Further simulations demonstrate that a hematoma with smaller permeability results in larger wall stress, suggesting that blood coagulation in hematoma might increase its mechanical stability. This is in agreement with previous experimental observations of coagulation having a beneficial effect on the condition of a patient with the IMH.  相似文献   

18.
19.
《Biorheology》1996,33(3):267-283
The flow properties of aggregating red cell suspensions flowing at low flow rates through horizontal tubes are analyzed using a theoretical model. The effects of sedimentation of small aggregates, which will be formed at comparatively high flow rates, on the relative apparent viscosity are considered. In the case in which a large number of small aggregates are formed in a suspension flowing through a horizontal tube, it seems that red cells are transported as a concentrated suspension through the bottom part of the tube because of sedimentation of aggregates. A two-layer flow model is used for the distribution of red cells. It consists of plasma in the upper part and a concentrated red cell suspension in the bottom part of the tube divided by a smooth and horizontal interface. It is assumed that the suspension is a Newtonian fluid whose viscosity increases exponentially with hematocrit. The velocity distribution, the relative apparent viscosity and the flux of red cells are calculated as functions of width of plasma layer for a different discharge hematocrit. The theoretical results are compared with the results obtained from experimental data. The relative apparent viscosity increases rapidly with an increasing degree of sedimentation over a wide range of plasma layer widths.  相似文献   

20.
Magnitude and time-dependence of the effects of red cell aggregation and sedimentation on the rheology of human blood were studied during low shear (tau W 2.5 to 92 mPa) flow through horizontal tubes (ID 25 to 105 microns). Immediately following reduction of perfusion pressure to a low value the red cell concentration near the tube walls decreases as a result of red cell aggregation. This is associated with a transient increase of centerline velocity. Simultaneously, sedimentation begins to occur and eventually leads to the formation of a cell-free supernatant plasma layer. Time-course and extent of this sedimentation process are strongly affected by wall shear stress variation, particularly in the larger tubes. At the lower shear stresses, centerline velocity decreases (flow resistance increases) with time following the initial acceleration period, due to sedimentation of red cells. This is followed by a further increase of resistance caused by the elevation of hematocrit occurring because of the reduction of cell/plasma velocity ratio. The time dependence of blood rheological behaviour under these flow conditions is interpreted to reflect the net effect of the partially counteracting phenomena of sedimentation and red cell aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号