首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of purified human macrophage colony-stimulating factor (M-CSF) to accelerate the formation of stromal cells from murine bone marrow cells was investigated. The liquid culture of the marrow cells with M-CSF resulted in the formation of monolayers of macrophages on day 7. When the M-CSF was removed on that day and the residual adherent cells were cultured in the absence of M-CSF for an additional 7 days, many colonies appeared with cells that were morphologically distinguishable from M-CSF-derived macrophages. The appearance of the colonies was dependent on the concentration of M-CSF used at the beginning of the culture. Each colony was isolated as a single clone and analyzed. All clones were negative for esterase staining. These cells did not express M-CSF receptor mRNA and did not show a mitogenic response to M-CSF. On the contrary, these cells could be stimulated to proliferate by fibroblast growth factor and platelet-derived growth factor. The polymerase chain reaction analysis of these cells demonstrated constitutive expression of mRNA for M-CSF, stem cell factor, and interleukin (IL)-1, but not IL-3. Some clones expressed mRNA for granulocyte/M-CSF and IL-6. We also examined the ability of the cells to maintain murine bone marrow high proliferative potential colony-forming cells (HPP-CFC) in a coculture system. Most of the clones showed a significant increase in total HPP-CFC numbers after 2 weeks of coculture, although the extent of stimulation differed among clones. These results suggested that the colonies established by M-CSF were composed of functional stromal cells that were phenotypically different from macrophages. J. Cell. Physiol. 173:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
3.
In this work we provide evidence showing that granulocytes produce macrophage colony-stimulating factor (M-CSF) from the band cell stage and secrete this factor when induced to differentiate into polymorphonuclear cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF). Using an enriched population of myeloid band cells from murine bone marrow, we identified the presence of M-CSF with a chromophore-labelled monoclonal anti-M-CSF antibody. Using ELISA we detected the secretion of M-CSF in the supernatants of cultures of enriched band cells when induced with rhG-CSF to differentiate into mature neutrophils. We also found that M-CSF is the only factor responsible for the colony forming activity in the supernatants and lysates of band cells treated with rhG-CSF.  相似文献   

4.
A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Aβ). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Aβ, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts.  相似文献   

5.
M-CSF (CSF-1) can be produced in a variety of structural forms that may affect function in vivo. Truncated, nonglycosylated forms of recombinant M-CSF (rM-CSF) from E. coli have been refolded in vitro in high yield and shown to be functionally equivalent in vitro to glycosylated rM-CSF secreted from mammalian cells. An N-terminal domain of 149 amino acids is produced by all of the known M-CSF mRNA splice variants and is the region responsible for bioactivity observed in vitro. Heterodimeric rM-CSFs from different splice variants containing this domain were produced in pure form by refolding in vitro, and are fully active, but have yet to be observed in vivo. The circulating half-life of truncated M-CSF forms injected intravenously into rats increased with the MW of the M-CSF used. Large increases in half-life in vivo were observed following chemical addition of a single molecule of 10 kD polyethylene glycol to rM-CSF in vitro. The crystal structure of rM-CSF revealed that M-CSF is a member of a family of molecules related by having a distinctive four-helical-bundle structural core. Site-directed mutagenesis showed that residues in or near helix A and helix C are involved in receptor binding, as reflected by decreased bioactivity and receptor binding of certain mutants. A soluble form of the M-CSF receptor, c-fms, was produced in a baculovirus/Sf9 expression system and purified to homogeneity. The MW of rM-CSF saturated with this soluble receptor was determined by molecular sieve chromatography and light scattering. Each dimeric M-CSF molecule appears to bind two soluble receptor molecules in vitro, supporting the observation that M-CSF signaling is linked to receptor dimerization. Mol Reprod Dev 46:31–38, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
A new cell line was established from fibrosarcoma that had spontaneously developed in a mouse. The cells were maintained growing in culture for two years and constantly produced both macrophage colony-stimulating factor (M-CSF) and granulocyte colony-stimulating factor (G-CSF). Cloning of the cells by anchorage-independent colony formation gave subclones showing the activity of producing M-CSF and G-CSF in different proportions, whereas no subclone produced G-CSF without producing M-CSF simultaneously. Recloning of the bipotential subclones again gave clonal derivatives producing two types of CSF in various proportions. The observed heterogeneity of the cloned cells seems to be an epigenetic phenomenon, because the cells resumed the G-CSF producing activity in the absence of cell proliferation. After equilibrium was achieved, all of the subclones produced both M-CSF and G-CSF nearly in equal proportions. Tumorigenic and leukocytosis-inducing activity of the cloned cells was nearly comparable with the activity of the original tumor cells.  相似文献   

7.
Recently, we reported that human monocyte colony-stimulating factor (M-CSF) stimulates the clearance of lipoproteins containing apoB100 via both low density lipoprotein receptor-dependent and -independent pathways in target cells of M-CSF, and reduces plasma cholesterol level (Journal of Biological Chemistry, 265:12869-12875, 1990). This suggests a linkage of cytokines to the metabolic regulation of plasma cholesterol. Furthermore, we found a significant role of M-CSF in cholesterol metabolism of human monocyte-derived macrophages. M-CSF enhanced not only the uptake of acetylated low density lipoprotein and oxidized low density lipoprotein in macrophages, but also the efflux of cholesterol from cholesterol-loaded macrophages. To elucidate in vivo effects of M-CSF on cholesterol efflux from tissues, we administered an intravenous injection of 3H-cholesterol (150 microCi) into WHHL rabbits 1 month before starting M-CSF treatment. We observed an increased cholesterol efflux from tissues to plasma high density lipoprotein after M-CSF treatment when cholesterol efflux was estimated as the change in specific radioactivity of plasma high density lipoprotein-cholesterol. This result suggests that M-CSF can enhance the excretion of cholesterol from target cells of M-CSF, such as cholesterol-loaded macrophages in the arterial wall, and reduce the rate of atherogenesis.  相似文献   

8.
Vascular smooth muscle cell is a major cell component involved in the process of atherosclerosis. In the present study, we investigated the effects of platelet-derived growth factor (PDGF)-BB dimer on the expression of macrophage-colony stimulating factor (M-CSF) in vascular smooth muscle cells isolated from human umbilical artery. On Northern blot analysis of total RNAs isolated from smooth muscle cells, with human cDNA for M-CSF, a marked dose-dependent reduction of mRNA level was found in PDGF-BB-treated smooth muscle cells. Cellular production of M-CSF was estimated by immunoblot analysis of cell lysate with specific polyclonal antibody against recombinant human M-CSF. A concentration of 10 ng/ml PDGF-BB significantly reduced M-CSF mass in smooth muscle cells compared with that in the absence of PDGF-BB. These results suggest that PDGF-BB plays an important role in the cellular metabolism of vascular wall by regulating the rate of M-CSF production in vascular smooth muscle cells.  相似文献   

9.
The in vivo and ex vivo effects of macrophage colony-stimulating factor (M-CSF) were studied in a profoundly neutropenic rabbit model in order to determine its potential to augment pulmonary host defence against Aspergillus. M-CSF (100-600 microg/kg/d) was administered prophylactically to neutropenic rabbits with pulmonary aspergillosis starting three days pre-inoculation and then throughout neutropenia. Rabbits receiving M-CSF had significantly increased survival (P=0.01) and decreased pulmonary injury, as measured by decreased pulmonary infarction (P=0.004), when compared with untreated controls. Microscopic studies demonstrated greater numbers of activated pulmonary alveolar macrophages (PAMs) in lung tissue of rabbits receiving M-CSF, in comparison to controls (P<0.001). PAMs harvested from rabbits treated with M-CSF had a significantly greater percent phagocytosis of Aspergillus fumigatus conidia than did PAMs from controls (P=0.04). These data indicate that prophylactic administration of M-CSF augments pulmonary host defence against A. fumigatus and suggest a potential role for this cytokine as adjunctive therapy in the treatment of pulmonary aspergillosis in the setting of profound neutropenia.  相似文献   

10.
Several studies have indicated that one of the causes of alveolar bone destruction with periodontitis is lipopolysaccharide (LPS) from the cell wall of Gram-negative bacteria in plaque and that tobacco smoking may be an important risk factor for the development and severity of periodontitis. The present study was undertaken to determine the effect of nicotine and LPS on the expression of macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and prostaglandin E2 (PGE2) in osteoblasts, and the indirect effect of nicotine and LPS on the formation of osteoclast-like cells. Saos-2 cells were cultured with 10(-3) M nicotine, or 1 or 10 microg/ml LPS and 10(-3) M nicotine, for up to 14 days. The gene and protein expression of M-CSF and OPG were determined using real-time PCR and ELISA, respectively. PGE2 expression was determined using ELISA. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase (TRAP) staining of osteoclast precursors in culture with conditioned medium from nicotine and LPS-treated Saos-2 cells and the soluble receptor activator of NF-kappaB ligand (RANKL). M-CSF and PGE2 expression increased markedly in cells cultured with nicotine and LPS compared with those cultured with nicotine alone. OPG expression increased in the initial stages of culture with nicotine and LPS but decreased in the later stages of culture. The conditioned medium containing M-CSF and PGE2 produced by nicotine and LPS-treated Saos-2 cells with soluble RANKL increased the TRAP staining of osteoclast precursors compared with that produced by nicotine treatment alone. These results suggest that nicotine and LPS stimulate the formation of osteoclast-like cells via an increase in M-CSF and PGE2 production and that the stimulation is greater than with nicotine treatment alone.  相似文献   

11.
12.
Normal and malignant CD5+ B lymphocytes can develop macrophage-like characteristics. One stimulus of this phenotypic shift is culture of normal mouse splenic B lymphocytes with splenic fibroblasts or their conditioned media. These biphenotypic B/macrophage (B/M phi) cells simultaneously display macrophage characteristics, such as phagocytosis and F4/80 expression, while retaining B cell features, including expression of surface Ig, CD5, B220, and rearranged Ig genes. The present study investigated the fibroblast-secreted factor that promotes this phenotypic change from B cell to B/M phi cell. RT-PCR analysis demonstrated that mRNA for M-CSF is produced by splenic fibroblasts. Recombinant M-CSF (CSF-1) could replace fibroblast-conditioned medium to elicit the development and survival of B/M phi cells from splenic B lymphocytes. In addition, neutralization of fibroblast-secreted M-CSF with specific mAbs abrogated the ability of conditioned supernatants to promote outgrowth of B/M phi cells. The transition from B lymphocyte to B/M phi cell was marked by the kinetic appearance of mRNA for the M-CSF receptor, c-fms, at day 3 following culture initiation. These results demonstrate that M-CSF is important in the development and physiology of mouse B/M phi cells and potentially in the growth of human biphenotypic hematological malignancies. Interestingly, the presence of IFN-gamma in splenic B lymphocyte cultures abrogated the effect of fibroblast-conditioned medium or M-CSF on outgrowth of B/M phi cells. Furthermore, these findings suggest that a Th1 microenvironment favored by typical macrophages is detrimental to the outgrowth of B/M phi cells.  相似文献   

13.
In vitro culture of either human peripheral blood monocytes or murine peritoneal macrophages for 72 hr in the presence of macrophage colony-stimulating factor (M-CSF) dramatically increased their subsequent ability to mediate antibody-dependent cellular cytotoxicity (ADCC). The M-CSF-treated cells were more effective in ADCC at lower effector to target cell ratios and in the presence of lower concentrations of tumor-specific monoclonal antibody than the untreated control cells. Two other hematopoietic cytokines, granulocyte-macrophage colony-stimulating factor and interleukin-3, reported to enhance other macrophage effector functions were ineffective in promoting the development of ADCC by cultured human monocytes. All three hematopoietic growth factors were capable of enhancing the ability of the cultured monocytes to secrete TNF alpha; however, TNF alpha is unlikely to be an important cytotoxic factor in ADCC because neutralizing antibodies against TNF alpha had no affect on ADCC in vitro. Further, much higher concentrations of M-CSF were required to augment monocyte TNF alpha release (20-100 ng/ml) than ADCC capacity (1-10 ng/ml). These results suggest that M-CSF administration might prove effective in increasing the tumoricidal activities of tumor-specific monoclonal antibodies by enhancing the capacity of monocytes and macrophages to mediate ADCC.  相似文献   

14.
15.
The single gene for human macrophage colony-stimulating factor (M-CSF, or CSF-1) generates multiple mRNA species that diverge within the coding region. We have characterized translation products of these mRNA species from native and recombinant sources. Immunoblots of reduced native M-CSF indicate that multiple glycosylated species ranging from 25 kd to 200 kd are secreted by human monocytes and cell lines. In contrast, CV-1 cells expressing a short M-CSF clone secrete only 24 kd recombinant M-CSF. Synthetic peptide antibodies were developed to distinguish between secreted recombinant M-CSF from long and short mRNA splicing variants. Immunoblot analysis indicates that alternative mRNA splicing generates some M-CSF protein heterogeneity. Most secreted MIA PaCa-2 M-CSF reacts with long-clone-specific antibody. Lectin affinity chromatography shows that variable glycosylation contributes significantly to MIA PaCa-2 M-CSF size heterogeneity. In addition, cell lysates also contain larger M-CSF species that apparently undergo proteolytic processing before secretion. The data indicate that M-CSF protein heterogeneity results from both pre- and post-translational processing.  相似文献   

16.
Infiltration and local proliferation are known factors that contribute to tubulointerstitial macrophage accumulation. This study explored the time course of these two contributors' roles as tubulointerstitial inflammation and fibrosis progressing, and evaluated the mechanisms of the protective effect of atorvastatin. Unilateral ureteral obstructive (UUO) rats were treated with atorvastatin (10 mg/Kg) or vehicle. Expression of osteopontin (OPN) and macrophage colony-stimulating factor (M-CSF) was evaluated by RT-PCR and immunohistochemistry. Immunohistochemistry staining of ED1 was used to assess macrophage accumulation in interstitium. Histological evaluation was performed to semiquantify tubulointerstitial fibrosis. The results showed that on day 3 after UUO operation, OPN expression significantly increased and positively correlated with the number of the interstitial ED1(+) cells, while on day 10, M-CSF expression upregulated and correlated with interstitial ED1(+) cells. In atorvastatin treatment group, the increments of these two factors were attenuated significantly at the two time points, respectively. ED1(+) cell accumulation and fibrosis also ameliorated in the treatment group. For all the samples of UUO and treatment group on day 10, ED1(+) cells also correlated with interstitial fibrosis scores. The results suggest that OPN may induce the early macrophage/monocyte infiltration and M-CSF may play an important role in regulating macrophage accumulation in later stage of UUO nephropathy. Statin treatment decreases interstitial inflammation and fibrosis, and this renoprotective effect may be mediated by downregulating the expression of OPN and M-CSF.  相似文献   

17.
To investigate the effects of recombinant human monocyte colony-stimulating factor (M-CSF) on plasma cholesterol metabolism, we injected M-CSF intravenously into New Zealand White rabbits (n = 13) at a dose of 100 micrograms/day for 7 days. After the treatment, the plasma cholesterol levels fell by 33.2% from 61.4 +/- 25.9 to 41.0 +/- 10.2 mg/dl (mean +/- S.D.). We also injected a large dose of M-CSF (500 micrograms/day) for 6 days into Watanabe Heritable Hyperlipidemic rabbits, which are deficient in low density lipoprotein (LDL) receptors. Again, there was a significant reduction in plasma cholesterol levels by 36.2% from 730.5 +/- 176.4 to 466.0 +/- 104.9 mg/dl (n = 4). In the kinetic studies in New Zealand White rabbits with very low density lipoprotein, LDL, and methylated LDL, the removal rates of those lipoproteins were increased 1.9-, 1.7-, and 2.0-fold, respectively, after the treatment. Immunoblot analysis of LDL receptors in the treated rabbits showed no significant changes in LDL receptor proteins in livers but a great increase in spleens and bone marrows compared with the controls. Messenger RNA was also estimated by Northern blotting in both groups, and the results were compatible with those from the immunoblot. The data suggest that M-CSF stimulates the clearance of lipoproteins containing apolipoprotein B-100 via both LDL receptor-dependent and -independent pathways in target cells of M-CSF and reduces plasma cholesterol.  相似文献   

18.
19.
Human recombinant macrophage-CSF (M-CSF) induced migration across polycarbonate or nitrocellulose filters of human peripheral blood monocytes. Checkerboard analysis of M-CSF-induced migration, performed by seeding different cytokine concentrations above and below the filter, revealed that the locomotory response involved chemotaxis, though some gradient-independent augmentation of migration occurred. Polymixin B did not affect M-CSF chemotaxis and M-CSF was active on monocytes from the LPS-unresponsive mouse strain C3H/HeJ. These findings rule out a contribution of minute endotoxin contamination, below the sensitivity of the Limulus assay, in M-CSF chemotaxis. Rabbit anti-M-CSF antibodies inhibited the chemotactic activity of recombinant M-CSF, thus further indicating that the M-CSF molecule was indeed responsible for chemotaxis. M-CSF preparations encoded by 224 or 522 amino acid cDNA clones were equally effective in inducing monocyte migration. Recombinant M-CSF did not elicit a migratory response in large granular lymphocytes and in endothelial cells under conditions in which appropriate reference attractants were active. A modest stimulation of migration of polymorphonuclear leukocytes, inhibitable by antibodies, was observed at high cytokine concentrations (10 to 100 times higher than those required for monocyte locomotion). The maximal polymorphonuclear leukocytes response evoked by M-CSF was small compared to that evoked by reference chemoattractants or to that evoked by the same cytokine in monocytes. Hence, M-CSF is a potent chemoattractant for mononuclear phagocytes and exerts its action preferentially on cells of the monocyte-macrophage lineage. M-CSF, produced locally by activated macrophages, may play a role in the selective recruitment from the blood compartment of mononuclear phagocytes to amplify resistance against certain noxious agents.  相似文献   

20.
Earlier studies indicate that J6-1 human leukemic cells proliferate and propagate via the membrane-bound macrophage colony-stimulating factor (M-CSF)-mediated auto-juxtacrine mechanism. Matrix metalloproteinases (MMPs) can modulate the activity of cell membrane molecules and influence many cellular behaviors. Therefore, we hypothesized that MMP may also be involved in the membrane-bound M-CSF-mediated juxtacrine mechanism. First, we investigated whether blocking of membrane-bound M-CSF by neutralizing antibody to M-CSF or M-CSF receptor and adding of exogenous M-CSF are able to influence MMP-9 release. Next, we determined whether MMP-9 participated in J6-1 cells proliferation and influence the shedding of membrane-bound M-CSF and its receptor. Current studies show that blockade of the interaction between membrane-bound M-CSF and M-CSF receptor by antibody to M-CSF or M-CSF receptor promotes MMP-9 release. Moreover, we demonstrated that because of M-CSF mediated juxtacrine, lack of MMP-9 promotes J6-1 cell proliferation, in which a decrease in the shedding of cell-surface M-CSFR is involved. Hence, we suggest that membrane-bound M-CSF inhibit MMP-9 release and down-regulated MMP-9 contribute to juxtacrine stimulating in leukemic cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号