首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A chemiluminescent technique was applied to determine antioxidative activities of adriamycin, farmorubicin, mitomycin C and bleomycin against superoxide anion radical (O2?) in aprotic medium. The antioxidant capacity was expressed as the decrease in light emission from the O2? solution by and antibiotic. A KO2 solution in dimethyl sulphoxide (DMSO) and 18‐crown‐6 ether were used for the generation of O2?. The results showed that the examined compounds decreased the chemiluminescence (CL) sum from the O2?‐generating system in a dose‐dependent manner. Among the antibiotics examined, adriamycin, farmorubicin and bleomycin exhibited antioxidant activity almost comparable to that of 1,2‐dihydroxy benzene‐3,5‐disulphonic acid (tiron), an efficient of the O2? inhibitor. Mitomycin C was two‐times less effective as tiron in decreasing the initial CL intensity. The proposed assay with usage of ultraweak CL technique and the KO2–DMSO–crown ether system was useful for the evaluation of antioxidant activity in aprotic solvents. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Singlet oxygen generation is reported from (1) enzymatic reaction and (2) electron transfer reactions of the superoxide anion measured directly with an ultrasensitive near-IR emission spectrophotometer by monitoring the O2(1Δg) → O2 (3Σg?) transition at 1268 nm. Near-IR emission spectra from the myeloperoxidase and lactoperoxidase enzymatic systems show only emission of singlet oxygen at 1268nm. The lipoxygenase/Na–linoleate enzymatic reaction exhibits two emissions, 1268 nm and 1288 nm. The latter emission is identified as originating from a peroxy radical. Spectral and kinetic data giving evidence of singlet oxygen generation is obtained from the reaction of potassium superoxide solubilized by 18-crown-6-ether in acetonitrile with a series of organometallic coordination compounds.  相似文献   

3.
The reactions between superoxide free radical anion (.O2) with the halocarbons CCl4, CHCl3, BrCH2CH2Br(EDB), decachloro-biphenyl (DCBP), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in dimethyl sulphoxide (DMSO) results in the emission of chemiluminescence (CL). The chemiluminescence reactions are characterized as having biphasic second order kinetics, CL wavelengths between 350 nm and 650 nm, and exhibiting perturbation by chemicals reactive with singlet oxygen. These data suggest that singlet oxygen species are the excited state responsible for the light emissions. Polarographic studies confirm .O2 consumption and halide release in the reactions, while gas liquid chromatography and NBT reduction demonstrate the decomposition of the halocarbons into products. A chemiluminescent reaction mechanism is proposed involving reductive dehalogenation of the halocarbons and the generation of singlet oxygen. The significance of singlet oxygen generation is discussed with respect to a general mechanism for explaining the rapid initiation of lipid peroxidative membrane damage in halocarbon toxigenicity in animal and plant tissues.  相似文献   

4.
Electron transfer processes in leaves were investigated by chlorophyll fluorescence decay measurements. A fast chlorophyll fluorescence decay was observed in the intact state, reflecting normal electron transfer in Photosystem II. After treatment with DCMU a slow chlorophyll fluorescence decay was measured due to blocked electron transfer after the primary quinone QA. Additional saturating light pulses, one between each two measuring pulses, were used to completely reduce QA of the intact leaf: the chlorophyll fluorescence decay became similar to that of a DCMU treated leaf. A decreased electron donation rate to the reaction centre P680 was obtained after treatment with hydroxylamine. The intensity of the additional saturating light pulses was not sufficient to reduce all QA under this condition and only a small increase of the average chlorophyll fluorescence decay time occurred. Following our previous paper [Berg et al. (1997) Photosynthetica 34, in press], we investigated the effects of water stress with the additional saturating light pulses. An almost complete reduction of QA was possible after water stress started. A small, but systematic shortening of the slow chlorophyll fluorescence decay followed, up to a relative loss of leaf mass of 80%. At this time a rapid shortening of the chlorophyll fluorescence decay occurred, caused by an electron deficiency at the donor site of PS II. Additional saturating light pulses had no effects on the chlorophyll fluorescence decay any more, revealing a radiationless recombination between the reduced primary quinone Q and the oxidized reaction centre P680+.  相似文献   

5.
In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO−cGMP−PKG−ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO−cGMP−PKG−KATP channel signaling involving the induction of Nrf2/HO-1 pathway.  相似文献   

6.
Ying Yin 《BBA》2009,1787(7):913-919
Previous studies indicate that the three-subunit cytochrome bc1 core complex of Rhodobacter sphaeroides contains a fraction of the electron transfer activity of the wild-type enzyme. Addition of subunit IV to the core complex increases electron transfer activity to the same level as that of the wild-type complex. This activity increase may result from subunit IV preventing electron leakage, from the low potential electron transfer chain, and reaction with molecular oxygen, producing superoxide anion. This suggestion is based on the following observations: (1) the extent of cytochrome b reduction in the three-subunit core complex, by ubiquinol, in the presence of antimycin A, never reaches the same level as that in the wild-type complex; (2) the core complex produces 4 times as much superoxide anion as does the wild-type complex; and (3) when the core complex is reconstituted with subunit IVs having varying reconstitutive activities, the activity increase in reconstituted complexes correlates with superoxide production decrease and extent of cytochrome b reduction increase.  相似文献   

7.
《Inorganica chimica acta》1988,153(4):201-204
The reactions of the superoxide ion (O2) with tetra-p-tolyporphyrinatocobalt(II) [Co(II)TTP] in dimethyl sulfoxide(DMSO) have been investigated by use of electron spin resonance (ESR) spectroscopy. In the absence of oxygen, Co(II)TTP in DMSO gives the DMSO adduct, Co(II)(TPP)(DMSO). When this DMSO adduct is exposed to air, an oxygen complex, Co(II)(TTP)(DMSO)(O2), is formed in which the binding state between Co(II) and O2 has been considered formally as Co(III)O2. When the superoxide ion (O2 is added to this oxygen complex, a new superoxide complex, Co(II)(TTP)(O2)2, is formed. The same superoxide adduct is formed by the reaction of O2 with Co(II)TTP in the absence of oxygen.  相似文献   

8.
When 23 °C-grown potato leaves (Solanum tuberosum L.) were irradiated at 23 °C with a strong white light, photosynthetic electron transport and Photosystem-II (PS II) activity were inhibited in parallel. When the light treatment was given at a low temperature of 3 °C, the photoinhibition of photosynthesis was considerably enhanced, as expected. Surprisingly, no such stimulation of photoinhibition was observed with respect to the PS II function. A detailed functional analysis of the photosynthetic apparatus, using in-vivo fluorescence, absorbance, oxygen and photoacoustic measurements, and artificial electron donors/acceptors, showed a pronounced alteration of PS I activity during light stress at low temperature. More precisely, it was observed that both the pool of photooxidizeable reaction center pigment (P700) of PS I and the efficiency of PS I to oxidize P700 were dramatically reduced. Loss of P700 activity was shown to be essentially dependent on atmospheric O2 and to require a continued flow of electrons from PS II, suggesting the involvement of the superoxide anion radical which is produced by the interaction of O2 and the photosynthetic electron-transfer chain through the Mehler reaction. Mass spectrometric measurements of O2 exchange by potato leaves under strong illumination did not reveal, however, any stimulation of the Mehler reaction at low temperature, thus leading to the conclusion that O2 toxicity mainly resulted from a chilling-induced inhibition of the scavenging system for O2-radicals. Support for this interpretation was provided by the light response of potato leaves infiltrated with an inhibitor (diethyldithiocarbamate) of the chloroplastic Cu-Zn superoxide dismutase. It was indeed possible to simulate the differential inhibition of the PS II photochemical activity and the linear electron transport observed during light stress at low temperature by illuminating at 23 °C diethyldithiocarbamate-poisoned leaves. The experimental data presented here suggests that (i) the previously reported resistance of PS I to photoinhibition damage in-vivo is not an intrinsic property of PS I but results from efficient protective systems against O2 toxicity, (ii) PS I is photoinhibited in chilled potato leaf due to the inactivation of this PS I defence system and (iii) PS I is more sensitive to superoxide anion radicals than PS II.Abbreviations PS - Photosystem - E - Emerson enhancement - open p and P maximal and actual quantum yields of PS II photochemistry - DDC - diethyldithiocarbamate - QA and QB - primary and secondary (quinone) electron acceptors of PS II - P680 and P700 - reaction center pigments of PS II and PS I, respectively - SOD - superoxide dismutase  相似文献   

9.
The kinetics of decay in absorbance at 610 nm in the reaction of cysteine with ceruloplasmin was biphasic under anaerobic conditions. Admission of oxygen to the bleached ceruloplasmin restored the blue color to about 75 % of the original value. However, under aerobic or anaerobic conditions an initial bleaching corresponded to a 25 % decrease in blue color. This change was irreversible and remained after removal of excess cysteine from the reaction mixture by dialysis. There was no correlation between transient and steady-state kinetic parameters. Circular dichroism measurements showed a characteristic reduction in the negative band at 450 nm, which is specific for type 1b copper. Isolation and further studies on cysteine-modified ceruloplasmin with a lower A610/A280 ratio showed < 10% reduction in enzyme activity toward p-phenylenediamine and o-dianisidine. Evidence is also presented that ceruloplasmin catalyzes the oxidation of cysteine with a one-electron reduction of oxygen and the formation of superoxide ion, which is then converted to H2O2 by ceruloplasmin. The effect of superoxide dismutase and catalase also confirms the presence of superoxide and H2O2. In sum, these data show that a permanent reduction of type 1b copper occurred when cysteine was used as a substrate. We conclude that there is a single electron transfer from cysteine directly to oxygen using one specific copper of ceruloplasmin, type 1b.  相似文献   

10.
Acetaldehyde-dependent chemiluminescence has been found to be a sensitive technique for the study of superoxide and hydrogen peroxide formation in beef heart mitochondria. The system responds to ATP and antimycin A with increased emission intensities and to ADP and rotenone with decreased intensities, indicating that the chemiluminescence reflects the energy status of the mitochondrion. These effects are based on the ability of acetaldehyde to react with superoxide and hydrogen peroxide to form metastable intermediates which decay spontaneously with the emission of light. Additionally, these intermediates can react with cyanide to give alternative products which can also decay with the emission of light, the cyanide-evokable chemiluminescence. The interaction of acetaldehyde with mitochondria is complex because acetaldehyde can serve as a hydrogen source for NADH and as an inhibitor (at high concentration) of electron transport, and appears to be a reducing agent for a heat-stable site that autoxidatively generates HOOH from O2 –·. Inasmuch as acetaldehyde is a metabolite of ethanol, this broad spectrum of reactivity may play a role in the hepatic and cardiac toxicity that is associated with alcoholism. The heat-stable site that generates HOOH from O2 –· has been studied further and appears to contain vicinal dithiol which is primarily responsible for the cyanide-evokable chemiluminescence.The work reported in this paper was carried out by Erin E. Boh in partial fulfillment of the requirements for the Doctor of Philosophy degree.  相似文献   

11.
《Free radical research》2013,47(5):391-396
The effect of captopril and of its copper complex on several superoxide-dependent reactions used to detect and assay superoxide dismutase activity was studied, including pyrogallol and hematoxylin autoxidation and Nitro Blue Tetrazolium reduction. ln none of these systems were superoxide dismutase-like properties of captopril/Cu apparent. Captopril/Cu decreased the yield of DMPO-OH adducts generated by KO2 but this effect may be due to the acceleration of the decay of the adduct by captopril/Cu.  相似文献   

12.
Antony R. Crofts  Sangmoon Lhee  Jerry Cheng 《BBA》2006,1757(8):1019-1034
The Q-cycle mechanism of the bc1 complex explains how the electron transfer from ubihydroquinone (quinol, QH2) to cytochrome (cyt) c (or c2 in bacteria) is coupled to the pumping of protons across the membrane. The efficiency of proton pumping depends on the effectiveness of the bifurcated reaction at the Qo-site of the complex. This directs the two electrons from QH2 down two different pathways, one to the high potential chain for delivery to an electron acceptor, and the other across the membrane through a chain containing heme bL and bH to the Qi-site, to provide the vectorial charge transfer contributing to the proton gradient. In this review, we discuss problems associated with the turnover of the bc1 complex that center around rates calculated for the normal forward and reverse reactions, and for bypass (or short-circuit) reactions. Based on rate constants given by distances between redox centers in known structures, these appeared to preclude conventional electron transfer mechanisms involving an intermediate semiquinone (SQ) in the Qo-site reaction. However, previous research has strongly suggested that SQ is the reductant for O2 in generation of superoxide at the Qo-site, introducing an apparent paradox. A simple gating mechanism, in which an intermediate SQ mobile in the volume of the Qo-site is a necessary component, can readily account for the observed data through a coulombic interaction that prevents SQ anion from close approach to heme bL when the latter is reduced. This allows rapid and reversible QH2 oxidation, but prevents rapid bypass reactions. The mechanism is quite natural, and is well supported by experiments in which the role of a key residue, Glu-295, which facilitates proton transfer from the site through a rotational displacement, has been tested by mutation.  相似文献   

13.
Photoinhibition of the light-induced Photosystem I (PS I) electron transfer activity from the reduced dichlorophenol indophenol to methyl viologen was studied. PS I preparations with Chl/P700 ratios of about 180 (PS I-180), 100 (PS I-100) and 40 (PS I(HA)-40) were isolated from spinach thylakoid membranes by the treatments with Triton X-100, followed by sucrose density gradient centrifugation and hydroxylapatite column chromatography. White light irradiation (1.1 × 104E m–2 s–1) of PS I-180 for 2 hours bleached 50% of the chlorophyll and caused a 58% decrease in the electron transfer activity with virtually no loss of the primary donor, P700. The flash-induced absorbance change showed the decay phase with a half time of about 10 s that was attributed to the P700 triplet, suggesting that the photoinhibitory light treatment caused the destruction of the PS I acceptor(s), Fx and possibly A1. PS I-100 was similarly photobleached by the irradiation and the electron transfer activity decreased. There was, however, no apparent photoinhibition of the electron transport activity in PS I(HA)-40. Photoinhibition similar to that seen in PS I-180 also occurred in membrane fragments that were isolated without any detergent from a PS II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. PS I-180 was not photoinhibited under anaerobic conditions. The production of superoxide and fatty acid hydroperoxide during white light irradiation was significantly greater in PS I-180 than in PS I(HA)-40. The mechanism of photoinhibition in PS I preparations is discussed in relation to the formation of toxic oxygen molecules.Abbreviations A0,A1 primary and secondary electron acceptors of PS I - CD circular dichroism - DCPIP 2,6-dichlorophenol indophenol - FA, FB, FX iron-sulfur centers A, B, X - HA hydroxylapatite - LHCI lightharvesting complex of PS I - MDA malondialdehyde - MV methyl viologen - Na-Asc sodium L-ascorbate - P700 primary electron donor of PS I - PFD photon flux density - PS I-A and PS I-B psaA and psaB gene products - TBA thiobarbituric acid  相似文献   

14.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

15.
《BBA》1986,851(3):361-368
Absorbance changes in the picosecond region were studied in isolated reaction centers of the green photosynthetic bacterium Chloroflexus aurantiacus upon selective excitation of the primary electron donor, P, at 870 nm. The results indicate that the first observed state is an excited state of P (P1) which appears to transfer an electron to a bacteriochlorophyll a molecule absorbing at 812 nm (B1) in 10 ± 2 ps as indicated by a bleaching at this wavelength. This reaction is followed by a rapid electron transfer (3 ± 1 ps) from B1 to bacteriopheophytin a, so that the fraction of reaction centers in the state P+B1 remains small during the experiment. An apparent bleaching at 925 nm is ascribed to stimulated emission from excited P, which emission disappears upon formation of P+. The difference between these time constants for electron transfer and those observed for the same reactions in reaction centers of the purple photosynthetic bacterium Rhodopseudomonas (Rhodobacter) sphaeroides is discussed in terms of the energy difference between P1 and P+B1, which appears to be larger for C. aurantiacus.  相似文献   

16.
J. Lavorel 《BBA》1973,325(2):213-229
The decay of luminescence in the 6–600-μs range following a microsecond flash has been studied in Chlorella. The decay is highly polyphasic; three kinetic components are outlined, in confirmation of the results of K. L. Zankel (1971, Biochim. Biophys. Acta 245, 373–385).Extrapolation of the decay to zero dark time suggests that a unique metastable species C?+, resulting from photochemical charge separation in the System II reaction center, is the substrate of the recombination reaction which gives rise to luminescence.The fast (5–10 μs) and medium (50–70 μs) phases of the decay denote different stabilization steps, preceding relaxation of the centers by electron and proton transduction to the photosynthetic chain.NH2OH specifically inhibits the fast phase and enhances the medium phase. This effect is explained by assuming that the fast phase results from electron transfer from the water splitting system Z to the oxidized primary donor Y.3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU), in the presence of NH2OH elicits another fast phase. It is believed that DCMU affords a parasitic stabilization of C?+ by forming a complex with Q?.  相似文献   

17.
《Inorganica chimica acta》1988,142(2):229-234
An improved synthesis of VO(CysOCH3)2, (CysOCH3  the anion of cysteine methyl ester), is reported, as is an analogous preparation of VO(CysOCH2CH3)2, (CysOCH2CH3  the anion of cysteine ethyl ester). These are the first two examples of isolated vanadium-cysteine compounds. The oxidation of VO(CysOCH3)2 in DMSO is a reversible one electron change at 0.24 V versus SCE followed by a rapid chemical reaction which produces a stable vanadium(V) species. This species is reduced back to the vanadium(IV) complex at −1.30 V. The electrochemistry of VO(Cys-OCH2CH3)2 is nearly identical to that of the methyl ester compound.  相似文献   

18.
To improve photodynamic activity of the parent hypocrellin B (HB), a tetra-brominated HB derivative (compound 1) was synthesized in high yield. Compared with HB, compound 1 has enhanced red absorption and high molar extinction coefficients. The photodynamic action of compound 1, especially the generation mechanism and efficiencies of active species (Sen·-, O·-2 and 1O2) were studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of compound 1, the semiquinone anion radical of compound 1 is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of compound 1. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from Sens·- to the ground state molecular oxygen. The efficiencies of Sens·- and O·-2 generation by compound 1 are about three and two times as much as that of HB, respectively. Singlet oxygen (1O2) can be produced via the energy transfer from triplet compound 1 to ground state oxygen molecules. The quantum yield of singlet oxygen (1O2) is 0.54 in CHCl3 similar to that of HB. Furthermore, it was found that the accumulation of Sens·- would replace that of O·-2 or 1O2 with the depletion of oxygen in the sealed system.  相似文献   

19.
Measurements are reported on μs delayed light emission, following a single 10 ns excitation flash, in Alaska pea thylakoids treated with hydroxylamine (NH2OH) or with silicomolybdate.
  1. In thylakoids treated with 2 mM NH2OH in the light, or in the dark, the quantum yield of delayed light emission is considerably enhanced. A 10 μs lifetime component of delayed light emission is not significantly changed, whereas a 50–70 μs lifetime component is increased. MnCl2 and diphenylcarbazide are unable to reverse the above effects of NH2OH treatment. Thus Mn2+ and diphenylcarbazide must not donate electrons directly to reaction center II but on the oxygen-evolution side of the NH2OH block.
  2. When the closed form of photosystem II reaction centers (P680Q-), where P680 is the reaction center chlorophyll and Q is a ‘stable’ electron acceptor, is generated by preillumination of NH2OH-treated thylakoids with diuron present, the μs delayed light emission is inhibited, but a low level residual delayed light emission remains. Possible origins of this emission are discussed. It is believed that the best explanation for residual DLE is the existence of another acceptor besides Q that partakes in charge separation and rapid dissipative recombination when the reaction center is in the P680Q- state.
  3. The quantum yield of delayed light emission from ‘closed’ reaction centers (P680 +Q-) that have all charge stabilization reactions (i.e., flow of electrons to P680 + and out of Q-) blocked by NH2OH treatment and addition of diuron is 1.1×10-3 for components measured in a range from 6 to 400 μs and extrapolated to zero time.
  4. The addition of silicomolybdate, which accepts electron from Q-, causes delayed light emission in the μs range to be greatly inhibited.
  相似文献   

20.
Recent progress in understanding the Q-cycle mechanism of the bc1 complex is reviewed. The data strongly support a mechanism in which the Qo-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron–sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe–2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Qo-site, and the reduced iron–sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c1 and liberate the H+. When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O2 is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme bL to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme bL to enhance the rate constant. The acceptor reactions at the Qi-site are still controversial, but likely involve a “two-electron gate” in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b150 phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed.The mechanism discussed is applicable to a monomeric bc1 complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the bL hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号