共查询到20条相似文献,搜索用时 0 毫秒
1.
《Luminescence》2002,17(5):313-320
Although more currently utilized as analytical tool because of its high sensitivity and good reproducibility, the mechanism of the peroxyoxalate system, a chemiluminescence reaction with quantum yields only comparable to bioluminescence systems, has been extensively studied. The light emission mechanism can be divided in the pathway before chemiexcitation, which contains the rate‐limiting steps, and the fast and kinetically non‐observable chemiexcitation step. In this work, we obtain information on the mechanism of the slow pathways, attribute values to several rate constants prior to chemiexcitation and suggest a mechanistic scheme that could help optimization of conditions when the peroxyoxalate reaction is used as analytical tool. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
2.
Naotaka Kuroda Sayuri Hosoki Kenichiro Nakashima Shuzo Akiyama Richard S. Givens 《Luminescence》1998,13(2):101-105
The preparation of a fluorescent labelled oligonucleotide and its photographic detection by peroxyoxalate chemiluminescence (PO-CL) are described. Fluorescent labelling of an oligonucleotide (15-mer) was performed with naphthalene-2,3-dicarboxaldehyde to give an N-substituted 1-cyanobenz[f]isoindole (CBI) derivative (CBI-15-mer). For the photographic detection of CBI-15-mer, the bis(2,6-difluorophenyl) oxalate (DFPO)-dimethyl phthalate (DMP) system was selected to obtain a long-lived CL emission. After optimizing the conditions for the CL reaction, the system was applied to the photographic detection, and as little as 250 fmol per spot of CBI-15-mer on a membrane were detected as a visible spot with an instant photographic film. © 1998 John Wiley & Sons, Ltd. 相似文献
3.
Ryu Koike Yuji Kato Jiro Motoyoshiya Yoshinori Nishii Hiromu Aoyama 《Luminescence》2006,21(3):164-173
A series of diaryl and bis(4-styrylphenyl) oxalates with electron-donating substituents or fluorescent moieties were subjected to the peroxyoxalate chemiluminescence (PO-CL) reaction, some of which were found to behave in a unprecedented manner. The reaction of bis(p-methyoxyphenyl) oxalate, as a representative example, emits light due not only to the emission from the externally added excited fluorophore, but also from the presumable excimer of p-methoxyphenol. Also, during the reaction of the bis(4-styrylphenyl) oxalates, the emission based on the fluorescence as well as the excimer of the eliminating group were observed. These experimental results suggest that such emitting species would be formed by an intra- and intermolecular electronic interaction with a high-energy intermediate, such as a dioxetanone. 相似文献
4.
Several analytes such as the inorganic anions bromide, iodide, sulphite and nitrite and organic compounds as substituted anilines and sulphur compounds cause quenching of peroxyoxalate chemiluminescence. A detection method for liquid chromatography based on the quenching phenomenon has been developed. It makes use of an immobilized luminophore, i.e. 3-aminofluoranthene covalently bound via an alkyl-spacer on controlled pore glass, packed in the detector cell. The mechanism behind the quenching has been elucidated by investigating the roles of luminophores (both in the liquid and in solid state) and oxalates in peroxylate CL with respect to quenchers. Most probably the quencher destroys the radical ion pair produced after electron transfer in the last stage of the CIEEL reaction scheme, thus preventing the formation of electronically excited luminophore. 相似文献
5.
We describe a new sensitive and specific method for determination of oxalate in human serum. By using the chemiluminescence decay of monoperoxyoxalic acid very low concentrations of oxalate (200 nmol/L) can be determined. The mean serum oxalate level in apparently healthy controls was 14.5 ± 8.5 m?mol/L. Supplementation of ascorbic acid leads to an increase in serum oxalate level. While serum oxalate concentrations of calcium oxalate stone formers (x = 16.4 ± 9.8 m?mol/L) are not significantly different from the control group, an extreme increase of serum oxalate is evident in haemodialysis patients. The serum oxalate concentration decreased during dialysis treatment from 141.4 ± 32.1 m?mol/L to 36.4 ± 12.7 m?mol/L. 相似文献
6.
Ayuko Ihara Naoya Kishikawa Mitsuhiro Wada Yoshihito Ohba Kenichiro Nakashima Naotaka Kuroda 《Luminescence》2007,22(6):567-574
This paper describes a novel high-performance liquid chromatographic (HPLC) method for the determination of aromatic compounds with peroxyoxalate chemiluminescence (PO-CL ) detection following on-line UV irradiation. Aromatic compounds were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined via PO-CL detection using a mixture of bis(2,4,6-trichlorophenyl)oxalate (aryloxalate) and 2,4,6,8-tetrathiomorpholinopyrimido[5,4-d]pyrimidine (fluorophore) as a post-column CL reagent. Generation of hydrogen peroxide from aromatic compounds was confirmed using a flow injection analysis (FIA) system incorporating an enzyme column reactor immobilized with catalase. The conditions for UV irradiation were optimized using benzene and monosubstituted benzenes (phenol, benzaldehyde, nitrobenzene and N,N-dimethylaniline) by an HPLC system to evaluate the analytical performance of the proposed system. The detection limits for benzene and monosubstituted benzenes were in the range 2.1-124 pmol/injection at signal:noise (S:N) ratio = 3. Monocyclic and polycyclic hydrocarbons were also employed to investigate their CL properties. The possibility of PO-CL detection for a wide variety of aromatic compounds was shown for the first time. 相似文献
7.
On-line detection of substances with an alcoholic or phenolic hydroxyl group using imidazole and peroxyoxalate chemiluminescence was investigated qualitatively using a flow-injection method. The substances tested included six polyphenols, five monophenols and six sugars. After incubation at 80°C with an imidazole buffer (pH 9.5) the substances were detected by peroxyoxalate chemiluminescence. The polyphenols tested (e.g., pyrogallol, purpurogallin, and dopamine) showed the strongest light emission. The sugars with hydroxyl groups (e.g., fructose and lactose) and the monophenols (e.g., phenol, serotonin, and β-estradiol) produced only a weak light emission. Reaction of hydroxyl compounds and imidazole generated hydrogen peroxide. Imidazole served two roles, it catalysed the reaction with the hydroxyl compound and initiated peroxyoxalate chemiluminescence on-line. A novel reactor formed by packing glass beads into a flow cell (Teflon) of a chemiluminometer improved the sensitivity of light detection. 相似文献
8.
Peroxyoxalate chemiluminescence enhanced by oligophenylenevinylene fluorophores in the presence of various surfactants
下载免费PDF全文

The effect of several surfactants on peroxyoxalate chemiluminescence (PO‐CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO‐CL efficiency. Various effects of anionic, cationic, amphoteric and non‐ionic surfactants on the CL efficiency of PO‐CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non‐ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non‐ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water‐insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
《Luminescence》2002,17(6):362-369
The peroxyoxalate reaction is utilized in a wide variety of analytical applications; however, its mechanism is still not very well understood, especially with respect to the excitation step, where the ‘chemical energy’ is transformed into ‘excitation energy’. This base‐catalysed reaction of activated oxalic phenyl esters with hydrogen peroxide in the presence of highly fluorescent aromatic hydrocarbons with low oxidation potentials is the only known chemiluminescence system for which exists experimental evidence for the occurrence of the intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism of proven high efficiency for excited state formation. We report here the singlet quantum yields and relative rate constants of the excitation step (kCAT/kD), obtained in the peroxyoxalate reaction, utilizing steroid‐substituted oxazolinylidenes as activators. In agreement with the CIEEL mechanism, a linear correlation of ln(kCAT/kD) with the oxidation potential of the activators is obtained, and the singlet quantum yields can be rationalized in terms of the free energy balance of the back electron transfer, leading to the formation of the activator's excited state. Thus, these results contribute to the experimental validation of the widely employed, thus still controversial, CIEEL mechanism. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
10.
The mechanism of luminol chemiluminescence is a special case of nucleophilic addition to carbonyl compounds. The breakdown of the key intermediate, an alpha hydroxy hydroperoxide, produces a peracid ortho to an acyl diazene group. After intramolecular addition of the peracid, the energy from nitrogen expulsion is utilized in the formation of an anti-aromatic endoperoxide. Rupture along the O,O bond leaves a substantial part of the ensuing phthalate in its excited state. The emitter is shown to be a mono-protonated phthalate unaccessible by photoexcitation. The dark reaction is a concerted decomposion of the alpha hydroxy hydroperodixe to yield ground-state phthalate. 相似文献
11.
A kinetic model that accurately describes intensity vs. time reaction profiles for the chemiluminescence reaction between luminol and hydrogen peroxide, as catalyzed by horseradish perioxdase, is derived and evaluated. A set of three differential equations is derived and solved to provide intensity time information for the first 200 seconds of the reaction. The model accurately predicts intensity-time profiles when literature values are used for all but one of the reaction rate constants. Furthermore, the model predicts a nonlinear curve for plots of light intensity versus the initial hydrogen peroxide concentration. Experimental data confirm that such plots are nonlinear. Finally, a linear double-reciprocal plot is predicted by the model and the experimental data verify this relationship. (c) 1993 Wiley & Sons, Inc. 相似文献
12.
A luminol-dependent chemiluminescence assay for the assessment of the phagocytosis of erythrocytes sensitized with anti-D IgG immunoglobulin by mononuclear leukocytes is described. The mononuclear leukocytes were obtained by apheresis enriched by centrifugation through a density gradient and stored in liquid nitrogen before use. The total reaction mixture, consisting of mononuclear leukocytes-luminol-erythrocytes (either anti-D IgG sensitized or unsensitized controls) was 500 μl, light detection was by an LKB 1251 luminometer. Peak luminescence was seen between 35–45 minutes, the reaction being exhausted by 120 minutes. Determination of the reproducibility of the assay gave intra- and inter-assay coefficients of variation of 5% and 13% respectively. We found the chemiluminescent response to be affected by the number of erythrocytes used in the assay and by the composition of the medium in which the cells were resuspended, particularly the pH at the initiation of the assay. We also compared the chemiluminescence assay to a microscopic phagocytic assay and found the results virtually identical. However, the former chemiluminescence assay was much easier to perform, marginally more sensitive, less laborious and eliminated any possibility of subjective error. 相似文献
13.
Violanthrone, an emitter of exceptionally bright chemiluminescence, was examined in dimethylformamide solution to determine whether it also emits particularly bright electrogenerated chemiluminescence (ECL). The ECL measurements were carried out using a cycled potential which was applied to platinum electrodes. At the maximum sweep rate of 80 Vs?1 available, the intensity of the violanthrone ECL was still increasing with sweep rate and was c. 56% of that from rubrene, a bright, commonly used emitter of ECL. Furthermore, assuming that the emission arises from radical anioncation recombination, the sweep rate dependence showed that the least stable radical ion (probably the cation) decays with a half-life shorter than 0.2s. 相似文献
14.
Optimization of an HPLC peroxyoxalate chemiluminescence detection system for some dansyl amino acids
Bis(2,4,6-trichlorophenyl) oxalate (TCPO)-hydrogen-peroxide-generated chemiluminescence (CL) of four dansyl amino acids has been used as a model system for the optimization of a detection system in reversed-phase high-performance liquid chromatography. Dansylated alanine, glutamic acid, methionine, and norleucine were subjected to peroxyoxalate induced CL in a static system and in a flow system under various conditions with respect to TCPO (ethyl acetate) and hydrogen peroxide (acetone) concentrations, solvent composition and flow, using a two-pump or a one-pump post-column reagent system. From the CL-decay curve, the influence on the emission signal from the total flow rate in the detector was investigated. Special attention was focused on the mixing of the LC eluate and the reagent in order to combine an efficient collection of the emitted light using a 74μI flow cell (originally 10μI in the fluorescence detector) with minimal extra column band broadening. Therefore, a capillary fused-silica tubing of about 100μm i.d. was inserted against the end-frit of the column and brought through a mixing tee, in which the solutions of TCPO and hydrogen peroxide were added. The column end tubing ended in the flow cell and the LC eluate and the reagents were mixed when entering the flow-cell. Average detection limits (S/N=2) of 200fmol injected dansylated amino acid could be reached. A comparison is made between the use of TCPO and DNPO (bis (2, 4-dinitrophenyl) oxalate). 相似文献
15.
A range of nitrogen-containing compounds (alkyl amines, piperazines, cyclohexylamines and nitrogen heterocyclics) were investigated for generation of hydrogen peroxide from dopamine and detection by peroxyoxalate chemiluminescence. Imidazole, ethyleneurea and allantoin among the nitrogen heterocyclic compounds tested generated hydrogen peroxide from dopamine following incubation at 60°C, pH 9.5–10.5, for 0–30 min. Imidazole was the most effective for generation of hydrogen peroxide, but imidazole derivatives with a primary amine side chain (histamine) or thiol (ethylenethiourea) were not effective. The presence of a ketone group (ethyleneurea, allantoin) did not hinder the reaction. Under optimal conditions (30 min incubation, 50 mmol/L imidazole) 10.5 nmol of dopamine could be detected. The cyclohexylamines tested produced low amounts of hydrogen peroxide (0.09–2.74% of light intensity with imidazole), and the piperazines and the alkyl amines tested produced no detectable hydrogen peroxide. Imidazole reacts with the phenolic groups of dopamine in a different manner from monoamine oxidase, and a reagent containing imidazole, ethyleneurea or allantoin was useful for non-enzymatic detection of dopamine by peroxyoxalate chemiluminescence.© John Wiley & Sons, Ltd. 相似文献
16.
Salerno D Daban JR 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,793(1):75-81
We have previously shown that the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H(2)O(2) chemiluminescent reaction in acetone can be used for the detection of proteins labeled with the fluorescent reagent 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) on polyvinylidene difluoride (PVDF) membranes. To improve this method, in this work we have designed and constructed a cell that allows us to perform this chemiluminescent reaction on PVDF membranes with a homogeneous distribution of the reagents. Using this cell we have examined the analytical properties of several recently developed fluorescent protein dyes chemically different from MDPF. We have found that the metal chelate dye SYPRO Ruby can also be excited by the high-energy intermediate produced in the TCPO-H(2)O(2) reaction. 相似文献
17.
Dongguang Yin Chunjuan Xie Li Zhang Binghu Liu Xiaozhou Zhou Peng Wang Minghong Wu 《Luminescence》2008,23(6):434-438
In the present study, a novel peroxyoxalate CE–CL system was developed to achieve high signal stability and sensitivity based on a design of a new interface including a new mixing mode and a new grounding electrode mode. Amino acids fluorescently tagged with dansyl chloride and naphthalene‐2,3‐dicarboxaldehyde(NDA) were used for the study. Experiment results show this new system is quite effective to separate and detect amine acid with high stability and resolute. The detection limits were 1.1 nmol/L for dansyl‐leucine (Leu) and 2.0 nmol/L for dansyl‐aspartic acid (Asp). The relative standard deviations of peak height and migration time were in the ranges of 2.3–3.8% and 1.2–1.5%, respectively. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
18.
Haider A. J. Al Lawati Mira M. Al‐Nadabi Gouri B. Varma Fakhr Eldin O. Suliman Hasnaa Al‐Abri 《Luminescence》2014,29(8):1148-1153
A highly sensitive, rapid and economical method for the determination of amlodipine (AM) in biological fluids was developed using a peroxyoxalate chemiluminescence (CL) system in a lab‐on‐a‐chip device. Peroxyoxalate‐CL is an indirect type of CL that allows the detection of native fluorophores or compounds derivatized with fluorescent labels. Here, fluorescamine was reacted with AM, and the derivatization product was used in a bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system. Fluorescamine reacts selectively with aliphatic primary amine at neutral or basic pH. As most of the calcium channel blocker and many cardiovascular drugs do not contain primary amine, the developed method is highly selective. The parameters that influenced the CL signal intensity were studied carefully. These included the chip geometry, pH, concentration of reagents used and flow rates. Moreover, we confirmed our previous observation about the effects of imidazole, which is commonly used in the bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system as a catalyst, and found that the signal was significantly improved when imidazole was absent. Under optimized conditions, a calibration curve was obtained with a linear range (10–100 µg/L). The limit of detection was 3 µg/L, while the limit of quantification was 10 µg/L. Finally the method was applied for the determination of AM in biological fluids successfully. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
This article describes the use of probes directly labeled with horseradish peroxidase in conjunction with enhanced chemiluminescence,
which allows a flexible approach to hybridizations and detections. This system may be used with the following applications:
Southern blots, Northern blots, colony and plaque screening for positive clones, YAC clone screening, and PCR products detection.
The major steps required for the use of directly labeled HRP probes are hybridization, stringent washes, and detection. 相似文献
20.
《Luminescence》2002,17(1):1-4
Results obtained by measuring human whole blood neutrophil chemiluminescence (CL) using the BioOrbit 1251 cuvette luminometer and the Immunotech LM‐01T microtitre plate luminometer are compared in this study. Opsonized zymosan, phorbol myristate acetate, N‐formyl–Met–Leu–Phe and calcium ionophore A23187 were used as activators. The CL response of neutrophils to their stimulation with the individual types of activators tested was fully detectable using either type of the luminometers. The kinetic curves of CL activity obtained from both the cuvette and the microtitre plate luminometers had similar characteristics. The only insignificant difference observed when comparing the kinetic curves was in the rates of the CL reactions. The peak CL response of activated neutrophils was reached faster when using the luminometer BioOrbit 1251 than with the luminometer Immunotech LM‐01T. A likely reason for this difference is the mode of transporting samples during the measurement, inducing different degrees of agitation. However, although this fact needs to be considered when interpreting results, both types of luminometer can be fully utilized in both research and clinical laboratories. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献