首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Three polypeptide chains, A, B1, and B2, have been described for mouse laminin, a basement membrane protein. We studied expression of laminin A, B1, and B2 mRNA in the developing mouse kidney. Induction of kidney mesenchyme differentiation in vitro led to an increased expression of B1 and B2 chain mRNA on day 1 of development. In contrast, expression of A chain mRNA increased on day 2, when epithelial cell polarization begins. Laminin A mRNA and polypeptide were expressed only by epithelia during in vivo development as well. Some polarized cell types producing basement membrane (endothelium, some adult epithelia) lacked the A chain mRNA and polypeptide, although they did express B chains. Laminin with the 400 kd A chain is therefore a transient form appearing at specific sites of kidney morphogenesis, whereas isoforms with a different A chain or without it have a more widespread distribution.  相似文献   

5.
Immunohistochemistry as well as in situ and Northern blot hybridization were employed to determine temporal and cell-type-specific expression of transforming growth factor-alpha (TGF-alpha) in the mouse uterus during the peri-implantation period. The co-localization of TGF-alpha (by immunohistochemistry) with its mRNA (by in situ hybridization) in the luminal and glandular epithelia on Days 1-4 of pregnancy (Day 1 = vaginal plug) and also in many stromal cells on Days 3 and 4 indicates that these cells are the primary sites of TGF-alpha synthesis during the preimplantation period. The higher levels of TGF-alpha mRNA in total uterine RNA on Day 4, as shown by Northern blotting, is consistent with the recruitment of stromal cells expressing this gene. During the post-implantation period (Days 5-8), the co-localization of the mRNA and protein in the decidua at the implantation sites suggests that the decidualizing stromal cells synthesize TGF-alpha. Although in situ hybridization showed the presence of mRNA in embryos on Days 5-8, immunostaining was noted in the embryo only on Days 5 and 6. These results suggest that uterine and embryonic expression of TGF-alpha during the peri-implantation period could be involved in embryonic development, preparation of the uterus for implantation, and decidualization.  相似文献   

6.
Liu G  Zhang X  Lin H  Li Q  Wang H  Ni J  Amy Sang QX  Zhu C 《Life sciences》2005,77(26):3355-3365
Matrix metalloproteinases (MMPs) and their tissue inhibitors play important roles in the remodeling of extracellular matrix (ECM). MMP-26, also called endometase or matrilysin-2, is a novel member of the MMP family. The present study was to investigate the temporal and spatial expression of MMP-26 mRNA in mouse uterus during the estrous cycle and early pregnancy by using in situ hybridization and semi-quantitative RT-PCR. In this study, MMP-26 mRNA was found to be localized to the luminal and glandular epithelium at proestrus and estrus, and the expression level was decreased significantly from metestrus to dioestrus. During pre-implantation period, MMP-26 mRNA was predominantly expressed in luminal and glandular epithelium at much higher level; whereas it switched to stroma during peri-implantation period, and also appeared in the blastocysts and the implantation sites. The results suggested that MMP-26 might play a role in the cycling changes of mouse uterus during the estrous cycle and embryo implantation.  相似文献   

7.
Galectin-1 is a member of β-galactoside-binding lectins expressed in a variety of mammalian tissues. We report here that galectin-1 mRNA is abundantly expressed in the mouse reproductive organs such as the uterus and ovary. Uterine expression of galectin-1 mRNA is specifically regulated in the embryonic implantation process. Its expression increased at a high level on the fifth day post coitum (dpc 5) when embryos hatched into the endometrial epithelial cells. In the absence of embryos, however, galectin-1 expression in the mouse uterus decreased on dpc 5. In the delayed implantation mice, galectin-1 mRNA level was augmented by the termination of the delay of implantation. Ovarian steroids progesterone and estrogen differentially regulated galectin-1 mRNA level in uterine tissues. Treatment with RU486, a progesterone receptor antagonist, blocked progesterone-induced galectin-1 mRNA level in uterine tissues of ovariectomized mouse. ICI182780, a pure estrogen receptor antagonist, clearly blocked the estrogen effect. Taken together, galectin-1 gene expression in the uterine tissues was regulated by ovarian steroids and this regulation correlated with the implantation process. Mol. Reprod. Dev. 48:261–266, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
9.
Changes in the temporal and spatial patterns of expression of mRNA encoding uterine extracellular matrix (ECM) proteins were determined during the peri-implantation period. Northern blot hybridization of cDNAs corresponding to laminin (LM) B1, LM B2, entactin, fibronectin, collagen (CL) type IV alpha 1, and CL IV alpha 2 was performed on RNA extracted from either whole mouse uteri or endometrial explants between Day 4, i.e., the day of implantation, and Day 7 of pregnancy, when the decidual response is well established. These analyses revealed a dramatic increase in LM B2, CL IV alpha 1, and CL IV alpha 2 mRNA expression by Day 7 of pregnancy. Relative levels of the mRNA encoding other ECM components, including LM B1, were not altered when compared to changes in the relative level of expression of glyceraldehyde-3-phosphate dehydrogenase mRNA. The differential expression of the B chains of LM appeared to be limited to the stromal cells of the endometrium. In situ hybridization of uterine sections with cRNA probes corresponding to LM B1, LM B2, and CL IV alpha 1 demonstrated that LM B1 was expressed temporally in high amounts in the primary decidual zones (PDZ) and persisted throughout PDZ degeneration. LM B2 mRNA was expressed in both primary and secondary decidual zones and persisted through Day 8 of pregnancy. CL IV alpha 1 mRNA expression mimicked that of LM B2. Oviduct ligation on Day 2 of pregnancy was used to prevent embryo transport to one uterine horn, whereas decidualization and embryo implantation were permitted in the contralateral horn. This experiment demonstrated that the increases in uterine ECM mRNA expression were not due solely to the changing hormonal milieu of the uterus. ECM components, including CL IV, have been shown to bind growth factors such as transforming growth factor-beta (TGF-beta) in an insoluble but biologically active form. The remarkable similarity between the pattern of CL IV and LM B2 expression and previously reported TGF-beta deposition (Tamada et al., Mol Endocrinol 1990; 4:965-972) prompted examination of the effects of this growth factor on blastocyst development in vitro. TGF-beta 1 was tested for its ability to alter embryo outgrowth on LM-coated tissue culture surfaces; however, significant differences in the rate or extent of outgrowth in the presence of TGF-beta were not detected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, has been shown to be essential for fertilization and implantation. The aim of this study was to determine the expression and hormonal regulation of basigin gene in mouse uterus during the peri-implantation period. Basigin immunostaining and mRNA were strongly localized in luminal and glandular epithelium on day 1 of pregnancy and gradually decreased to a basal level from day 2-4 of pregnancy. Basigin mRNA expression in the sub-luminal stroma was first detected on day 3 of pregnancy and increased on day 4 of pregnancy. On day 5 of pregnancy, the expression of basigin protein and mRNA was only detected in the implanting embryos, and the luminal epithelium and sub-luminal stroma surrounding the embryos. A similar expression pattern of basigin was also induced in the delayed-implantation uterus which was activated by estrogen injection. On day 6-8 of pregnancy, although a basal level of basigin protein was detected in the secondary decidual zone, basigin mRNA expression was strongly seen in this location. Basigin mRNA was also highly expressed in the decidualized cells under artificial decidualization. Estrogen significantly stimulated basigin expression in the ovariectomized mouse uterus. A high level of basigin immunostaining and mRNA was also seen in proestrus and estrus uteri. These results suggest that basigin expression is closely related to mouse implantation and up-regulated by estrogen.  相似文献   

11.
12.
Cai L  Zhang J  Duan E 《Cytokine》2003,23(6):193-178
Embryo implantation depends on the synchronized development of the blastocyst and the endometrium. This process is highly controlled by the coordinated action of the steroid hormones: estrogen and progesterone. By autocrine, paracrine or juxtacrine routes, some growth factors or cytokines are involved in this steroidal regulation pathway. Here we report the effects of epidermal growth factor (EGF) on embryo implantation in the mouse, the expression and distribution patterns of EGF protein in the mouse blastocyst, ectoplacental cone (EPC) and peri-implantation uterus on days 1-8 of gestation.By RT-PCR and dot blot, we found that EGF and its receptor (EGFR) are co-expressed in the blastocyst and peri-implantational uteri of pregnant days 2-8 (D2-D8) mice. Injection of EGF antibody into a uterine horn on the third day of pregnancy (D3) significantly reduced the number of mouse embryos that implanted on D8, indicating EGF have a function in the mouse embryo implantation.Further investigation by using indirect immunofluorescence and confocal microscope was made to trace EGF and EGFR protein localization during the mouse embryo implantation. EGF and EGFR are co-localized in the blastocyst, and in the secondary trophoblastic giant cells (SGC) of the EPC. At the pre-implantation stage, the distribution of EGF protein in the mouse uterus changes from epithelium to stroma. On D1 of pregnancy, EGF is mainly distributed in uterine stroma and myometrium. On D2, it is present in the uterine epithelium. On D3, it changes again from the uterine epithelium to the stroma. By D4, EGF is predominantly in the stroma. This dynamic distribution correlates with the proliferation activity of uterine cells at each period. On D6-D8 of embryo implantation, EGF 3 protein accumulates at the uterine mesometrial pole, a region that contributes to the trophoblastic invasiveness and placentation.This temporal and spatial localization of EGF protein in the mouse uterus implicates the cytokine in the regulation of trophoblastic invasiveness and uterine receptiveness.  相似文献   

13.
14.
Abstract: Laminin A, B1, and B2 chain mRNA levels in degenerating and regenerating mouse sciatic nerves were examined using northern blot analysis. In normal intact nerves, B1 and B2 mRNA steady-state levels were high, but when the nerves were crushed, the steady-state levels of B1 and B2 mRNA per milligram wet tissue weight of the distal segments of the nerves increased five- to eightfold over that of control levels as the total RNA and β-actin mRNA levels increased, suggesting that these increases were the consequence of Schwann cell proliferation after axotomy. When the steady-state levels of B1 and B2 mRNA were normalized as the ratio to total RNA or β-actin mRNA levels, however, they drastically decreased to about 20% of the normal nerve levels in the nerve segments distal to both the crush and transaction sites 1 day after injury. In the crushed nerves, B1 and B2 mRNA levels gradually increased as the regenerating nerves arrived at the distal segments and reestablished normal axon–Schwann cell contact, and then returned to normal levels on the 21 st day. In the transected nerves, where Schwann cells continued to be disconnected from axons, both B1 and B2 mRNA levels remained low. Cultured Schwann cells expressed detectable levels of B1 and B2 chain mRNA which significantly increased when the cells were cocultured with sensory neurons. However, mRNA for A chain was not detectable in the normal, axotomized nerves or in cultured Schwann cells. These data indicate that Schwann cells express laminin B1 and B2 chain mRNA that are up-regulated by axonal or neuronal contact, but they do not express A chain mRNA.  相似文献   

15.
16.
Extracellular matrix (ECM) has specific effects on cell behavior that influence many aspects of early development. In the early postimplantation mouse embryo the ECM component laminin promotes polarization and survival of the embryonic ectoderm and formation of Reichert's membrane. In addition, dynamic patterns of laminins 1 and 10/11 expression in the embryo and the uterus correlate with the progression of implantation. In the implanting blastocyst, laminin 1 is strongly expressed in the trophectoderm basement membrane, whereas laminin 10/11 is expressed only in the inner cell mass and polar trophectoderm. In the uterus, laminin 10/11 is strongly expressed in the decidualizing matrix of the stroma. We show here that laminins 1 and 10/11 have distinct effects on trophoblast cell behavior that influence the process of implantation. Laminin 1 promotes random migration and decreases spreading, whereas laminin 10/11 promotes both spreading and persistent migration. When presented as adjacent substrates, cells stop at the boundary and do not enter the region containing laminin 1. Laminin 1 also affects cell-cell adhesion through changes in the localization of vascular endothelial (VE) cadherin. Cultured cells and primary trophoblast explants become single cells or very small groups on laminin 1 and VE-cadherin localization at regions of cell-cell contact decreases dramatically. In contrast, trophoblast cells maintain strong cell-cell contacts on substrates of laminins 10/11, and exhibit strong staining of VE-cadherin in all regions of cell-cell contact. These effects, and the localization of laminin 1 in Reichert's membrane and laminin 10/11 in the surrounding decidual matrix, suggest that these laminin isoforms influence the direction and quality of invasion of trophoblast cells during implantation, and provide epigenetic cues that drive the morphogenesis of the yolk sac placenta.  相似文献   

17.
18.
Laminin was selectively extracted from different mouse tissues using EDTA-containing buffer. By immunoblotting with an antiserum raised against mouse Engelbreth-Holm-Swarm (EHS) tumor laminin, such extracts could be shown to contain laminin-like molecules with a low apparent proportion of A chain to B chains. Native laminin was purified from mouse heart tissue and was shown to have an aberrant polypeptide composition as compared to mouse EHS tumor laminin. Most prominently, mouse heart laminin contains an Mr 300,000 polypeptide which is not antigenically related to the A or the B chains. Furthermore, nonreducible polypeptide components were seen with apparent Mr values of 600,000 and 900,000. The Mr 600,000 component contains epitopes shared with both EHS tumor laminin and the Mr 300,000 polypeptide and possibly represents a covalently cross-linked complex of an A or B chain with the Mr 300,000 chain.  相似文献   

19.
Vitamin A (retinol) and its active metabolite, retinoic acid (RA), serve dual roles in the female reproductive tract. Cytochrome P450 26A1 (Cyp26a1), an RA-metabolizing enzyme, is involved in mammalian early pregnancy. In order to investigate the role of RA synthesis and metabolism during embryo implantation, we first investigated the spatiotemporal expression of RA-signal in the mouse uterus during the peri-implantation period. RA-signal-related molecules, including binding proteins, synthesizing enzymes, catabolizing enzymes and receptors, were all expressed in the mouse uterus during embryo implantation. The locations of the RA synthetic system (Aldh1a1, Aldh1a2, CRBP1) and catabolizing enzyme (Cyp26a1) were distinctive in the mouse uterus during the peri-implantation period. Aldh1a1 was located in the gland epithelium, whereas Aldh1a2 and CRBP1 were located in the stroma and Cyp26a1 was expressed in the luminal and glandular epithelium. These results demonstrate that RA synthesis occurs in the stroma, whereas RA metabolism takes place in the endometrial epithelium. When endometrial epithelial cells were isolated on day 4.5 of pregnancy and treated with E2 (17beta-estradiol) or a combination of E2 and progesterone, all-trans-RA (10???M) significantly down-regulated the expression of LIF, HB-EF and CSF-1 in these cells in vitro. Taken together, these results suggest that the accumulation of RA in the stroma during mouse embryo implantation has an inhibitory effect on the expression of the three implantation-essential genes, LIF, HB-EGF and CSF-1. Therefore, the expression of Cyp26a1 in luminal and glandular epithelium might block the adverse effect of RA in order to promote successful embryo implantation.  相似文献   

20.
During the implantation period, the porcine conceptus secretes interleukin-1beta (IL1B) that may be involved in the establishment of pregnancy in pigs. However, the regulatory mechanism for IL1B receptor expression and the function of IL1B in the uterine endometrium are not well elucidated. In this study, we determined IL1B receptor expression in the uterine endometrium of pigs during pregnancy. IL1B receptor subtypes, IL1 receptor type I (IL1R1) and IL1 receptor accessory protein (IL1RAP) were expressed in the uterine endometrium with the expression being most abundant on Day 12 of pregnancy primarily in the luminal and glandular epithelial cells. Expression of IL1R1 mRNA increased in response to IL1B in a dose-dependent manner, and expression of IL1RAP mRNA increased in response to both IL1B and estradiol, indicating that expression of endometrial IL1B receptors was regulated cooperatively by IL1B and estrogen of conceptus origin. During the peri-implantation period, the porcine uterine endometrium actively synthesizes and secretes prostaglandins (PGs). IL1B increased expression of PTGS1 and PTGS2 genes that are rate-limiting for PG synthesis in the uterine endometrium. Collectively, the results indicated that IL1B regulates expression of IL1R1 and IL1RAP and stimulates expression of PTGS1 and PTGS2 that are considered to be the most rate-limiting enzymes for endometrial synthesis of PGs during the peri-implantation period of pregnancy in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号