首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammals with excess insulin-like growth factor 2 (IGFII) during embryogenesis have developmental defects that can lead to perinatal lethality. In adults, higher levels of IGFII increase the risk of cancer and may accelerate the development of atherosclerosis. IGFII can be increased as a consequence of genetic abnormalities and polymorphisms, and through epigenetic mechanisms. Decreasing IGFII levels thus can benefit human health. Degradation of IGFII is mediated by the insulin-like growth factor type 2 receptor (IGF2R). The growth-stimulatory effects of IGFII, and their attenuation by the IGF2R, are considered important for the evolution of IGFII/IGF2R interaction and imprinting. The IGFII/IGF2R interactions during development have been previously examined in mice carrying knock-out alleles of these genes or their regulators. Here we tested the ability of the IGF2R to ameliorate the negative effects of IGFII on development and survival in crosses between Igf2 and Igf2r transgenic mice, which may be a better model for natural variations in the levels of these genes' products. A fraction of hemizygous Igf2 transgenic mice die in the perinatal period, some with cleft palates, with an ensuing reduction in the frequency of transgenic mice among the surviving offspring. The Igf2r transgene lowers the frequency of cleft palate and increases the percentage of Igf2 transgenic mice among the live offspring. These findings draw attention to the fact that Igf2-associated lethality selects for the retention of IGFII/IGF2R binding in present day mammals; it may have played a similar role in the acquisition of IGFII/IGF2R binding in ancient mammals.  相似文献   

2.
3.
Although insulin‐like growth factor‐I (IGF‐I) can act as a neurotrophic factor for peripheral neurons in vitro and in vivo following injury, the role IGF‐I plays during normal development and functioning of the peripheral nervous system is unclear. Here, we report that transgenic mice with reduced levels (two genotypes: heterozygous Igf1+/− or homozygous insertional mutant Igf1m/m) or totally lacking IGF‐I (homozygous Igf1−/−) show a decrease in motor and sensory nerve conduction velocities in vivo. In addition, A‐fiber responses in isolated peroneal nerves from Igf1+/− and Igf1−/− mice are impaired. The nerve function impairment is most profound in Igf1−/− mice. Histopathology of the peroneal nerves in Igf1−/− mice demonstrates a shift to smaller axonal diameters but maintains the same total number of myelinated fibers as Igf1+/+ mice. Comparisons of myelin thickness with axonal diameter indicate that there is no significant reduction in peripheral nerve myelination in IGF‐I–deficient mice. In addition, in Igf1m/m mice with very low serum levels of IGF‐I, replacement therapy with exogenous recombinant hIGF‐I restores both motor and sensory nerve conduction velocities. These findings demonstrate not only that IGF‐I serves an important role in the growth and development of the peripheral nervous system, but also that systemic IGF‐I treatment can enhance nerve function in IGF‐I–deficient adult mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 142–152, 1999  相似文献   

4.
Diabetic nephropathy (DN) is a severe diabetic microvascular complication with high mortality. Long noncoding RNAs (lncRNAs) are characterized as important regulators of various biological processes by emerging researches, whereas the molecular mechanisms by which lncRNAs participate in DN progression need to be further clarified. Herein, we conducted a study on the regulatory role in DN of an lncRNA named antisense of Igf2r non‐protein‐coding RNA (Airn). Airn expression was downregulated in renal tissues of diabetic mice, and was negatively related with DN development. Besides, Airn downregulation was detected in high‐glucose‐stimulated podocytes, resulting in poorer cell viability, a higher tendency to cell apoptosis, and a deficiency of laminin level, while Airn overexpression could significantly alleviate these deleterious effects. Mechanistically, using RNA immunoprecipitation and RNA pull‐down assays, we found that Airn could bind to the RNA‐binding protein Igf2bp2, thus facilitating translation of Igf2 and Lamb2 to maintain normal podocyte viability and glomerular barrier function. Collectively, our results demonstrate the protective role of lncRNA Airn in podocytes against DN, providing a new insight into DN pathogenesis and molecular therapy.  相似文献   

5.
《Epigenetics》2013,8(7):934-941
An understanding of the natural change in DNA methylation over time, defined as “epigenetic drift,” will inform the study of environmental effects on the epigenome. This study investigates epigenetic drift in isogenic mice exposed perinatally to lead (Pb) acetate at four concentrations, 0 ppm (control), 2.1 ppm (low), 16 ppm (medium), and 32 ppm (high) prior to conception through weaning, then followed until 10 months of age. Absolute values of DNA methylation in a transposon-associated metastable locus, Cdk5-activator binding protein (CabpIAP), and three imprinted loci (Igf2, Igf2r, and H19) were obtained from tail tissue in paired samples. DNA methylation levels in the controls increased over time at the imprinted Igf2 and Igf2r loci (both P = 0.0001), but not at the imprinted H19 locus or the CabpIAP metastable epiallele. Pb exposure was associated with accelerated DNA hypermethylation in CabpIAP (P = 0.0209) and moderated hypermethylation in Igf2r (P = 0.0447), and with marginally accelerated hypermethylation at H19 (P = 0.0847). In summary, the presence and magnitude of epigenetic drift was locus-dependent, and enhancement of drift was mediated by perinatal Pb exposure, in some, but not all, loci.  相似文献   

6.
7.
Adrenal cortical carcinomas (ACC) are rare but aggressive tumours associated with poor prognosis. The two most frequent alterations in ACC in patients are overexpression of the growth factor IGF2 and constitutive activation of Wnt/β-catenin signalling. Using a transgenic mouse model, we have previously shown that constitutive active β-catenin is a bona fide adrenal oncogene. However, although all these mice developed benign adrenal hyperplasia, malignant progression was infrequent, suggesting that secondary genetic events were required for aggressive tumour development. In the present paper, we have tested IGF2 oncogenic properties by developing two distinct transgenic mouse models of Igf2 overexpression in the adrenal cortex. Our analysis shows that despite overexpression levels ranging from 7 (basal) to 87 (ACTH-induced) fold, Igf2 has no tumour initiating potential in the adrenal cortex. However, it induces aberrant accumulation of Gli1 and Pod1-positive progenitor cells, in a hedgehog-independent manner. We have also tested the hypothesis that Igf2 may cooperate with Wnt signalling by mating Igf2 overexpressing lines with mice that express constitutive active β-catenin in the adrenal cortex. We show that the combination of both alterations has no effect on tumour phenotype at stages when β-catenin-induced tumours are benign. However, there is a mild promoting effect at later stages, characterised by increased Weiss score and proliferation. Formation of malignant tumours is nonetheless a rare event, even when Igf2 expression is further increased by ACTH treatment. Altogether these experiments suggest that the growth factor IGF2 is a mild contributor to malignant adrenocortical tumourigenesis.  相似文献   

8.
Members of the transforming growth factor β (TGF-β) superfamily of signaling molecules are involved in the regulation of many developmental processes that involve the interaction between mesenchymal and epithelial tissues. Smad7 is a potent inhibitor of many members of the TGF-β family, notably TGF-β and activin. In this study, we show that embryonic overexpression of Smad7 in stratified epithelia using a keratin 5 promoter, results in severe morphogenetic defects in skin and teeth and leads to embryonic and perinatal lethality. To further analyze the functions of Smad7 in epithelial tissues of adult mice, we used an expression system that allowed a controlled overexpression of Smad7 in terms of both space and time. Skin defects in adult mice overexpressing Smad7 were characterized by hyper-proliferation and missing expression of early markers of keratinocyte differentiation. Upon Smad7-mediated blockade of TGF-β superfamily signaling, ameloblasts failed to produce an enamel layer in incisor teeth. In addition, TGF-β blockade in adult mice altered the pattern of thymic T cell differentiation and the number of thymic T cells was significantly reduced. This study shows that TGF-β superfamily signaling is essential for development of hair, tooth and T-cells as well as differentiation and proliferation control in adult tissues.  相似文献   

9.
Maternal inheritance of targeted loss of function alleles encoding either the cyclin-dependent kinase inhibitor 1C (Cdkn1c) or the insulin-like growth factor 2 receptor (Igf2r) leads to fully penetrant perinatal lethality in C57BL/6J mice due to genomic imprinting. Here, we demonstrate that there is a marked enhancement in postnatal viability of F(1) mice carrying either the ablated Igf2r ( approximately 32%) or Cdkn1c ( approximately 83%) when the paternal genome was derived from the inbred Mus musculus musculus CzechII/Ei strain. Genetic and molecular analyses indicated that the increased viability was not caused by relaxation of imprinted gene expression, but is the consequence of unidentified polygenic modifiers that are not imprinted. In the course of this study, restriction-site polymorphisms between 129S1 and CzechII/Ei in 21 imprinted and 14 biallelically expressed genes were identified. These polymorphisms may prove useful in determining the effects of different mutant backgrounds on genomic imprinting.  相似文献   

10.
High levels of insulin-like growth factor II (IGFII) mRNA expression are detected in many human tumors of different origins including rhabdomyosarcoma, a tumor of skeletal muscle origin. To investigate the role of IGFII in tumorigenesis, we have compared the mouse myoblast cell line C2C12-2.7, which was stably transfected with human IGFII cDNA and expressed high and constant amounts of IGFII, to a control cell line C2C12-1.1. A rhabdomyosarcoma cell line, RH30, which expresses high levels of IGFII and contains mutated p53, was also used in these studies. IGFII overexpression in mouse myoblast C2C12 cells causes a reduced cycling time and higher growth rate. After gamma-irradiation treatment, C2C12-1.1 cells were arrested mainly in G0/G1 phase. However, C2C12-2.7 and RH30 cells went through a very short G1 phase and then were arrested in an extended G2/M phase. To verify further the effect of IGFII on the cell cycle, we developed a Chinese hamster ovary (CHO) cell line with tetracycline-controlled IGFII expression. We found that CHO cells with high expression of IGFII have a shortened cycling time and a diminished G1 checkpoint after treatment with methylmethane sulfonate (MMS), a DNA base-damaging agent, when compared with CHO cells with very low IGFII expression. It was also found that IGFII overexpression in C2C12 cells was associated with increases in cyclin D1, p21, and p53 protein levels, as well as mitogen-activated protein kinase activity. These studies suggest that IGFII overexpression shortens cell cycling time and diminishes the G1 checkpoint after DNA damage despite an intact p53/p21 induction. In addition, IGFII overexpression is also associated with multiple changes in the levels and activities of cell cycle regulatory components following gamma-irradiation. Taken together, these changes may contribute to the high growth rate and genetic alterations that occur during tumorigenesis.  相似文献   

11.
In the mouse the insulin-like growth factor receptor type 2 gene (Igf2r) is imprinted and maternally expressed. Igf2r encodes a trans-membrane receptor that transports mannose-6-phosphate tagged proteins and insulin-like growth factor 2 to lysosomes. During development the receptor reduces the amount of insulin-like growth factors and thereby decreases embryonic growth. The dosage of the gene is tightly regulated by genomic imprinting, leaving only the maternal copy of the gene active. Although the function of Igf2r in development is well established, the function of imprinting the gene remains elusive. Gene targeting experiments in mouse have demonstrated that the majority of genes are not sensitive to gene dosage, and mice heterozygous for mutations generally lack phenotypic alterations. To investigate whether reduction of Igf2r gene dosage by genomic imprinting has functional consequences for development we generated a non-imprinted allele (R2Delta). We restored biallelic expression to Igf2r by deleting a critical element for repression of the paternal allele (region 2) in mouse embryonic stem cells. Maternal inheritance of the R2Delta allele has no phenotype; however, paternal inheritance results in biallelic expression of Igf2r, which causes a 20% reduction in weight late in embryonic development that persists into adulthood. Paternal inheritance of the R2Delta allele rescues the lethality of a maternally inherited Igf2r null allele and a maternally inherited Tme (T-associated maternal effect) mutation. These data show that the biological function of imprinting Igf2r is to increase birth weight and they also establish Igf2r as the Tme gene.  相似文献   

12.
Epigenotype switching of imprintable loci in embryonic germ cells   总被引:8,自引:0,他引:8  
 Expression of imprinted genes is dependent on their parental origin. This is reflected in the heritable differential methylation of parental alleles. The gametic imprints are however reversible as they do not endure for more than one generation. To investigate if the epigenetic changes in male and female germ line are similar or not, we derived embryonic germ (EG) cells from primordial germ cells (PGCs) of day 11.5 and 12.5 male and female embryos. The results demonstrate that they have an equivalent epigenotype. First, chimeras made with EG cells derived from both male and female embryos showed comparable fetal overgrowth and skeletal abnormalities, which are similar to but less severe than those induced by androgenetic embryonic stem (ES) cells. Thus, EG cells derived from female embryos resemble androgenetic ES cells more than parthenogenetic cells. Furthermore, the methylation status of both alleles of a number of loci in EG cells was similar to that of the paternal allele in normal somatic cells. Hence, both alleles of Igf2r region 2, Peg1/Mest, Peg3, Nnat were consistently unmethylated in EG cells as well as in the primary embryonic fibroblasts (PEFs) rescued from chimeras. More strikingly, both alleles of p57kip2 that were also unmethylated in EG cells, underwent de novo methylation in PEFs to resemble a paternal allele in somatic cells. The exceptions were the H19 and Igf2 genes that retained the methylation pattern in PEFs as seen in normal somatic tissues. These studies suggest that the initial epigenetic changes in germ cells of male and female embryos are similar. Received: 1 September 1997 / Accepted: 15 October 1997  相似文献   

13.
The longevity‐assurance activity of the tumor suppressor p53 depends on the levels of Δ40p53 (p44), a short and naturally occurring isoform of the p53 gene. As such, increased dosage of p44 in the mouse leads to accelerated aging and short lifespan. Here we show that mice homozygous for a transgene encoding p44 (p44+/+) display cognitive decline and synaptic impairment early in life. The synaptic deficits are attributed to hyperactivation of insulin‐like growth factor 1 receptor (IGF‐1R) signaling and altered metabolism of the microtubule‐binding protein tau. In fact, they were rescued by either Igf1r or Mapt haploinsufficiency. When expressing a human or a ‘humanized’ form of the amyloid precursor protein (APP), p44+/+ animals developed a selective degeneration of memory‐forming and ‐retrieving areas of the brain, and died prematurely. Mechanistically, the neurodegeneration was caused by both paraptosis‐ and autophagy‐like cell deaths. These results indicate that altered longevity‐assurance activity of p53:p44 causes memory loss and neurodegeneration by affecting IGF‐1R signaling. Importantly, Igf1r haploinsufficiency was also able to correct the synaptic deficits of APP695/swe mice, a model of Alzheimer’s disease.  相似文献   

14.
Mannose 6-phosphate receptor deficient mice were generated by crossing mice carrying null alleles for Igf2 and the 300 kDa and 46 kDa mannose 6-phosphate receptors, Mpr300 and Mpr46. Pre- and perinatal lethality of mice nullizygous for Igf2, Mpr300 and Mpr46 was increased. Triple deficient mice surviving the first postnatal day had normal viability and developed a phenotype resembling human I-cell disease. The triple deficient mice were characterized by dwarfism, facial dysplasia, waddling gait, dysostosis multiplex, elevated lysosomal enzymes in serum and histological signs of lysosomal storage predominantly in fibroblasts, but also in parenchymal cells of brain and liver. A paternally inherited Mpr300 wild type allele that is normally inactive in mice due to imprinting was reactivated in some tissues of mice lacking IGF II and MPR 46 and carrying a maternal Mpr300 null allele. Inspite of the partial reactivation the phenotype of these mice was similar to that of triple deficient mice.  相似文献   

15.
Allele specific timing of replication is believed to be a hallmark of imprinted genes, however recent evidence suggests that this might not be the case for the insulin-like growth factor 2 (Igf2) and H19 locus. In this report, we assayed the timing of replication of Igf2 and H19 in two mouse embryonic cell lines expressing both H19 and Igf2, and one cell line maternally disomic for the Igf2/H19 mouse locus which expresses H19 but not Igf2. In all cell lines, Igf2 and H19 were replicated early in the S phase of the cell cycle, and both alleles replicated at the same time. This indicates that any differences in the timing of replication at the Igf2/H19 locus are of a lesser magnitude than those found in other imprinted regions. Dev Genet 20:29–35, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
《Epigenetics》2013,8(7):619-626
Biological responses to environmental stress, including nutrient limitation are mediated in part by epigenetic modifications including DNA methylation. Insulin-like growth factor II (Igf2) and H19 are subject to epigenetic modifications leading to genomic imprinting. The present study was designed to test the effect of maternal low protein diet on the Igf2/H19 locus in offspring. Pregnant Sprague-Dawley rats were fed diets containing 180 g/kg casein (control) or 90 g/kg (LP) casein with either 1 mg/kg (LP) or 3 mg/kg folic acid (LPF). LP diet increased Igf2 and H19 gene expression in the liver of day 0 male offspring and the addition of folic acid reduced the mRNA level in LPF rats to that of the control group. DNA methylation in Imprinting Control Region (ICR) of Igf2/H19 locus increased significantly following maternal LP diet but rats fed the LPF diet did not exhibit the hypermethylation. The Differential Methylation Region 2 (DMR2) did not show any change in methylation in either LP or LPF rats. The expression of Dnmt1 and Dnmt3a, the members of DNA methyltransferase family, and methyl CpG-binding domain 2 (Mbd2) was significantly increased following the maternal LP diet but did not differ between the control and LPF group. There is a strong correlation between methylation of ICR with the expression of Igf2 and H19. These results suggested that maternal exposure to a low protein diet and folic acid during gestation alters gene expression of Igf2 and H19 in the liver by regulating the DNA methylation of these genes. The DNA methyltransferase machinery may be involved into the programming of imprinted genes through the imprinted control region.  相似文献   

17.
Phenotypic characterization of Akt1 and Igf2 null mice has revealed roles for each in the regulation of placentation, and fetal and postnatal growth. Insulin-like growth factor 2 (IGF2) is encoded by the Igf2 gene and influences cellular function, at least in part, through activation of an intracellular serine/threonine kinase called AKT1. Akt1 and Igf2 null mice were originally characterized on inbred and mixed genetic backgrounds, prohibiting direct comparisons of their phenotypes. The impact of loss of AKT1 or IGF2 on placental, fetal, and postnatal function were examined following transfer of Akt1 and Igf2 null mutations to an outbred CD1 genetic background. Disruption of IGF2 did not affect AKT expression or activation. Both Akt1-/- and Igf2-/- mice exhibited decreased placental weight, fetal weight and viability. Deregulation of placental growth was similar in Akt1 and Igf2 nulls; however, disruption of Igf2 had a more severe impact on prenatal survival and postnatal growth. Placental structure, including organization of junctional and labyrinth zones and development of the interstitial, invasive, trophoblast lineage, were similar in mutant and wild-type mice. Akt1 and Igf2 null mutations affected postnatal growth. The relative impact of each gene differed during pre-weaning versus post-weaning growth phases. AKT1 had a more significant role during pre-weaning growth, whereas IGF2 was a bigger contributor to post-weaning growth. Akt1 and Igf2 null mutations impact placental, fetal and postnatal growth. Placental phenotypes are similar; however, fetal and postnatal growth patterns are unique to each mutation.  相似文献   

18.
Interactions between genes and environment play a critical role in the pathogenesis of type 2 diabetes. Low birth weight, due to genetic and environmental variables affecting fetal growth, is associated with increased susceptibility to the development of type 2 diabetes and metabolic disorders in adulthood. Clinical studies have shown that polymorphisms in the Insulin-like growth factor 1 (IGF-1) gene or heterozygous mutations in IGF-1 and IGF-1 receptor (IGF-1R) genes, resulting in reduced IGF-1 action, are associated with low birth weight and post-natal growth. Mice lacking one of the IGF-1R alleles (Igf1r+/−) exhibit a 10% reduction in post-natal growth, and develop glucose intolerance (males) and insulin resistance (males and females) as they age. To investigate whether adverse environmental factors could accelerate the onset of the metabolic syndrome, we conducted a short duration intervention of high fat diet (HFD) feeding in male and female Igf1r+/− and wild-type (WT) control mice. The HFD resulted in insulin resistance, hyperglycemia, and impaired glucose tolerance in males of both genotypes whereas in females exacerbated diabetes was observed only in the Igf1r+/− genotype, thus suggesting a sexual dimorphism in the influence of obesity on the genetic predisposition to diabetes caused by reduced IGF-1 action.  相似文献   

19.
Previous transfection experiments using a zinc-inducible expression vector have shown that overexpression of insulin-like growth factor II (IGFII) in MCF7 human breast cancer cells can reduce dependence on oestrogen for cell growth in vitro (DALY RJ, HARRIS WH, WANG DY, DARBRE PD. (1991) Cell Growth Differentiation 2, 457-464.). Parallel transfections now performed into another oestrogen-dependent human breast cancer cell line (ZR-75-1) yielded three clones of transfected ZR-75-1 cells that produced levels of zinc-inducible IGFII mRNA and secreted mature IGFII protein similar to those found in the transfected MCF7 cells. However, unlike in MCF7 cells, no resulting effects were found on cell growth in the ZR-75-1 clones, even though the ZR-75-1 clones possessed receptors capable of binding 125I-IGFI and showed a growth response to exogenously added IGFII. Medium conditioned by the ZR-75-1 clones could stimulate growth of untransfected MCF7 cells, indicating that the secreted IGFII protein was bioactive. Furthermore, zinc-induced IGFII was capable of increasing both pS2 mRNA levels and CAT activity from a transiently transfected AP1-CAT gene in the ZR-75-1 clones. Constitutive co-overexpression of the protein processing enzyme PC2 resulted in reduced levels of large forms of zinc-inducible IGFII, but zinc treatment still produced no effect on cell growth rate. Finally, however, constitutive co-overexpression of the type I IGF receptor (IGFIR) did result in zinc-inducible increased basal cell growth and reduced dependence on oestrogen for cell growth. These results demonstrate that while overexpression of IGFII per se was sufficient to deregulate MCF7 cell growth, the ZR-75-1 cells are limited in their proliferative response by their intrinsic receptor levels. However, although the proliferative response was limited, molecular responses (expression of pS2 and AP1-CAT) were not limited, indicating that different cellular responses can have different threshold receptor level requirements.  相似文献   

20.
Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r(+/-), and Igf1r(-/-) genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r(+/-) and Igf1r(-/-) mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号