首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chromosomal pairing of the three diploid hybrids Aegilops uniaristata × Ae. tauschii (ND), Ae. umbellulata × Ae. tauschii (UD) and Ae. comosa × Ae. uniaristata (MN), and a triploid hybrid Ae. cylindrica × Ae. caudata (DCC), was analyzed by electron microscopy in surface-spread-prophase-I nuclei and compared with light-microscopic observations of metaphase-I cells after C-banding and fluorescence in situhybridization. All hybrids showed extensive synapsis and complex multivalents in which up to 14 chromosomes were involved. In the diploid hybrids most metaphase-I chromosomal associations were between homoeologs, their frequencies being dependent on the relationship between the donor genomes. Despite the different overall bound-arm frequencies displayed by ND and MN hybrids at metaphase-I, chromosomes bearing rDNA sequences showed similar mean cell chromosomal association frequencies. In the triploid hybrid preferential associations involving C genomes were predominant. These observations are discussed in relation to the mechanism of diploidization showed by allotetraploid Aegilops species. Received: 13 January 1999 / Accepted: 12 March 1999  相似文献   

2.
Within F. arundinacea ten exotic populations each crossed with an indigenous bred form S. 170, and their hybrids, were grouped into fertile, partly fertile and sterile categories. Four were fertile hybrids with bivalent pairing (20.75 to 20.99/cell) and high pollen fertility. Two were partly fertile with univalents, and bivalents (18.26 to 19.54/cell) and rarely multivalents. The pollen fertility was low. Four hybrids were completely sterile with low or nil pollen fertility. The bivalent formation was low (12.94 to 14.25/cell) while the frequency of univalents and multivalents was high. There was evidence of structural changes of both gross (multivalents formation due to translocation; univalents due to inversions and deletions) and cryptic types from these hybrids. This diversity in the chromosomal constitution of several populations could be the result of several factors, including wide geographical distribution, climatic and edaphic diversity of the population, polyploid nature of the species, restriction of the gene pool and successful mode of vegetative propagation. In some of the populations an isolating mechanism has been effectively established and may well represent an initial stage in speciation.  相似文献   

3.
J. Sybenga 《Genetica》1973,44(2):270-282
Chromosomal segregation, and the frequency of large multivalents in Secale cereale were studied in autotetraploid duplex translocation heterozygotes. Models for estimating expected segregations and frequencies of multivalents were developed incorporating the probabilities of different chromosomal segments being bound by chiasmata. It appeared that the segregation of the two translocations tested fitted quite well the expected corrected segregation ratio of approximately 1: 11.5: 1, suggesting that induced preferential pairing was not strong enough to enhance preferential segregation resulting from random translocation segregation. Interspecific hybrids with S. montanum carrying the same translocations showed strong preferential pairing, i.e. significant deviation from the expected ratios.Three translocations tested (two not tested for segregation) showed a decrease in multivalent frequency mainly attributable to preferential pairing, especially in cases where the breakpoint was near one chromosome end. Possible reasons why preferential pairing is expressed here and not in the segregations are discussed.  相似文献   

4.
Spontaneous hybridization between a male-sterile oilseed rape and two weeds   总被引:1,自引:0,他引:1  
Spontaneous interspecific hybrids were produced under natural conditions (pollination by wind and bees) between a male-sterile cybrid Brassica napus (AACC, 2n = 38) and two weeds Brassica adpressa (AdAd, 2n = 14) and Raphanus raphanistrum (RrRr, 2n = 18). After characterization by chromosome counts and isozyme analyses, we observed 512 and 3 734 inter-specific seeds per m2 for the B. napus-B. adpressa and B. napus-R. raphanistrum trials respectively. Most of the hybrids studied had the expected triploid structure (ACX). In order to quantify the frequency of allosyndesis between the genomes involved in the hybrids, their meiotic behavior was compared to a haploid of B. napus (AC). For the B. napus-B. adpressa hybrids, we concluded that probably no allosyndesis occurred between the two parental genomes, and that genetic factors regulating homoeologous chromosome pairing were carried by the B. adpressa genome. For the B. napus-R. raphanistrum hybrids, high chromosome pairing and the presence of multivalents (in 9.16% of the pollen mother cells) indicate that recombination is possible between chromosomes of different genomes. Pollen fertility of the hybrids ranged from 0 to 30%. Blackleg inoculation tests were performed on the three parental species and on the interspecific hybrids. BC1 production with the weeds and with rapeseed was attempted. Results are discussed in regard to the risk assessment of transgenic rapeseed cultivation, F1 hybrid rapeseed variety production, and rapeseed improvement.  相似文献   

5.
Potato somatic hybrids obtained by protoplast fusion between Solanum tuberosum (4x) and Solanum chacoense (2x) were investigated for genome stability and meiotic behavior associated with the pollen viability in order to elucidate the mechanism influencing the fertility of the somatic hybrids. The ploidy level detections conducted in 2004 and 2007 demonstrated that 68 out of 108 somatic hybrids had their ploidy level changed to be uniform and euploidy after successive in vitro subcultures, which mainly occurred in octaploids, aneuploids, and mixoploids, while 74% hexaploids were still stable in their genome dosage in 2007. Different types of abnormal meiotic behavior were observed during the development of pollen mother cells (PMCs) including the formation of univalents, multivalents, laggard chromosomes, and chromosomal bridges, as well as triads and polyads. A higher proportion of abnormal meiosis seemed to be accompanied with a genome dosage higher than the hexaploids expected in this study. A significant positive correlation between defective PMCs and the number of small pollen grains and negative correlation between number of small pollen grains and pollen viability strongly suggested that abnormal meiosis could be a causal factor influencing the fertility of the somatic hybrids. The hexaploids with stable genome dosage and a certain level of fertility will have great potential in a potato breeding program.  相似文献   

6.
Eleven of the 12 species of Pachyphytum, all that are available, have n = 31–33 standard chromosomes, or a multiple. Accessory chromosomes were found in some or all collections of four species; some cells of one plant have more than 50 of them. Accessory chromosomes often occur in groups at metaphase I, corresponding to their origin from one to several chromocenters of prophase I. Intraspecific polyploidy occurs within five species, with diploids to 12-ploids (n = ca. 186) in P. compactum and diploids to decaploids (n = ca. 160) in P. hookeri. Although the basic chromosome number is high, evidence from meiosis in certain hybrids shows that the basic 31–33 chromosomes are probably all different: they do not pair with each other and they do not duplicate each other. Polyploids, with 62 or more chromosomes, are probably autopolyploids: they form multivalents, and the chromosomes they contribute to hybrids pair with each other. Three different probable hybrids have been found in the wild, and more than 300 hybrids have been produced in cultivation.  相似文献   

7.
Summary Meiotic associations of different wheat-Aegilops variabilis and wheat-Ae. kotschyi hybrid combinations with low and high homoeologous pairing were analyzed at metaphase I. Five types of pairing involving wheat and Aegilops genomes were identified by using C-banding. A genotype that seems to promote homoeologous pairing has been found in Ae. variabilis var. cylindrostachys. Its effect is detectable in the low pairing hybrids but not in the high ones. Pairing affinity has been analyzed on the basis of metaphase I associations in the low and high homoeologous pairing hybrids, and in bivalents and multivalents in the high pairing hybrids. The results indicate that the amount of bound arms of each type of identifiable association relative to the total associations formed (relative contribution) was not maintained, either between the different levels of pairing (low and high) or between different meiotic configurations (bivalents and multivalents). These findings seem to indicate that quantifications of genomic relationships based on the amount of chromosome pairing at metaphase I must be carefully done in this type of hybrid combinations.  相似文献   

8.
Two species of lemur, Lemur macaco and Lemur coronatus, which do not hybridize in the wild, have produced a first, “definite” female hybrid in captivity. Its karyotype contains one haploid set from each parent. The analogy with the parental chromosomes is such that the pairing of the corresponding chromosomal arms leads to the formation of an open chain and a ring. The difficulty in obtaining hybrids between these two species could reflect the existence of a prezygotic barrier. The presence of multivalents, with probably a negative action on the gametogenesis, would introduce a postzygotic barrier.  相似文献   

9.
The aim of the study was to characterize genomic relationships among cultivated tomato (Lycopersicon esculentum Mill.) (2n=2x=24) and diploid (2n=2x=24) non-tuberous wild Solanum species (S. etuberosum Lindl.). Using genomic in situ hybridization (GISH) of mitotic and meiotic chromosomes, we analyzed intergeneric somatic hybrids between tomato and S. etuberosum. Of the five somatic hybrids, two plants were amphidiploids (2n=4x=48) mostly forming intragenomic bivalents in their microsporocytes, with a very low frequency of multivalents involving the chromosomes of tomato and S. etuberosum (less than 0.2 per meiocyte). Tomato chromosomes showed preferential elimination during subsequent meiotic divisions of the amphidiploids. Transmission of the parental chromosomes into microspores was also evaluated by GISH analysis of androgenic plants produced by direct embryogenesis from the amphidiploid somatic hybrids. Of the four androgenic regenerants, three were diploids (2n=2x=24 or 2n=2x+1=25) derived from reduced male gametes of the somatic hybrids, and one plant was a hypertetraploid (2n=4x+4=52). GISH revealed that each anther-derived plant had a unique chromosome composition. The prospects for introgression of desirable traits from S. etuberosum into the gene pool of cultivated tomato are discussed. Received: 2 August 2000 / Accepted: 4 December 2000  相似文献   

10.
Every chromosome number from n = 12 to n =34 and also many higher numbers are known in one or more of the 130+ species of Echeveria, and the numerical boundary between diploids and tetraploids is not immediately apparent. Echeveria also is extraordinary for the number and diversity of hybrids that it can produce in cultivation, both within the genus and with species of several related genera. In 42 collections studied, the morphologically and cytologically variable E. secunda of central Mexico has n = 30-32, often with one or more B-chromosomes, and some quadrivalents are formed at meiosis in nearly every cell. Twenty-four hybrids of E. secunda, with 22 species or cytotypes considered diploids, resemble the former much more closely in appearance, and at meiosis 15-16 paired elements (bivalents and multivalents) are formed, never more, regardless of the number of chromosomes, 12 to 34, that were received from the other parent. It is concluded that the 15-16 paired elements in these hybrids are formed by the 30-32 chromosomes received from E. secunda, and that most chromosomes from the other parents occur as univalents, although usually a few associate with pairs from E. secunda to produce multivalents. Hybrids of E. secunda with 11 definitely tetraploid species having n = 34 to n = 68 are nicely intermediate in morphology between their parents, form mostly or entirely bivalents at meiosis, and most, probably all, including five intergeneric hybrids, are fertile. These observations are all consistent with the conclusion that E. secunda is an autotetraploid, even though no plants of the species having n = 15 or 16 have been found, and even though some other species of Echeveria having as many as 34 gametic chromosomes appear to be effectively diploid. Observations on pollen stainability and on second-generation hybrids are all compatible with this conclusion. The high chromosome numbers in many Mexican Crassulaceae that are now effectively diploid may have originated as polyploids that have become diploidized by mutation, loss, or suppression of duplicated chromosomes, segments, and genes. Hybrids of E. secunda, with three other species that appear to be tetraploids, have less regular meiosis, apparently because all of the chromosomes from the other parents do not regularly form pairs in the hybrids. These three species may represent intermediate stages in the processes of diploidization.  相似文献   

11.
G. Jenkins 《Chromosoma》1986,93(5):413-419
Comparisons were made between two kinds of tetraploids derived from the hybrid Lolium temulentum x L. perenne. One hybrid behaves like an autotetraploid with multivalents at first metaphase of meiosis in pollen mother cells. The other behaves like an allotetraploid, in which pairing at first metaphase is restricted to bivalents comprised of strictly homologous chromosomes. The diploidisation of the latter form is controlled by determinants located on both the normal, A chromosomes and on supernumary B chromosomes. Reconstruction of synaptonemal complexes and their elements, from serial sections through pollen mother cell nuclei examined under the electron microscope, reveals that at zygotene pairing in both forms results in multivalent formation involving non-homologous as well as homologous chromosomes. The mechanism responsible for the diploidisation is, therefore, not based on a restriction of pairing at early meiosis to homologous chromosomes but on a correction or transformation of the multivalent chromosome associations to bivalents subsequent to zygotene. The transformation is not completed until late pachytene. In the multivalent-forming tetraploid a maximum of four chromosomes are associated at first metaphase. Yet configurations of a higher valency are found at zygotene. There is, therefore, a partial transformation of multivalents even in this autotetraploid form which restricts configurations at metaphase I to homologous and homoeologous chromosomes only. In both hybrids some homologous bivalents are not the product of resolution of multivalents but result from two-by-two pairing from the beginning of zygotene.  相似文献   

12.
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers (n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium (Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.  相似文献   

13.
Summary In order to clarify the interspecific relationships between T. carmeli Boiss., T. echinatum M.B. and T. latinum Seb., numerous F1, F2 and BC1 hybrids of these species were raised, and their growth, pollen fertility, cytology and seedset were determined. T. carmeli was found to differ from both T. echinatum and T. latinum by at least three translocations, and their hybrids were semisterile as to pollen and seedset. T. latinum was more or less interfertile with T. echinatum and hybrids had normal meiosis, except for T. echinatum NYT 1401, whose hybrids with T. latinum were semisterile and evinced major chromosomal changes. Some implications of sterility and chromosomal heterogeneity are discussed. Backcrosses of T. echinatum × T. latinum F1s to either parent resulted in partial breakdown of the self-incompatibility system found in both parental species and their F1 hybrids.Contribution from the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel, 1972 Series, No. 2207-E. The work reported here was financed by Grant FG-IS-222 from the U.S. Department of Agriculture under P.L.480.  相似文献   

14.
 A multi-color genomic in situ hybridization (McGISH) method has been developed. Three different rice genomes, A, B and C, involved in rice somatic hybrids were distinguished using three different fluorescent signals. All the rice chromosomes from the different genomes could be identified by different fluorescent colors, and the distribution of each genome in the nucleus was clearly visualized under a fluorescence microscope. The relationship between chromosomal constitution and morphological variations observed in the somatic hybrids, and the utility of McGISH, are discussed based on the results currently obtained. Received: 21 November 1997 / Accepted: 9 December 1997  相似文献   

15.
 RFLP (restriction fragment length polymorphism) and GISH (genomic in situ hybridization) analyses were employed to identify the chloroplast and nuclear genomes of the somatic hybrids and progeny between tomato ‘Ohgata zuiko’ and Solanum lycopersicoides (‘LA 2386’). A random distribution of the chloroplast genotype was determined using a cloned 19.6-kb BamHI fragment (Ba1) of tobacco chloroplast DNA. Eight selected hybrids were analyzed for their chromosomal compositions; 4 were tetraploids (2n=48) with an equal number of chromosomes derived from each parent as accurately determined by GISH, and the other 4 were hexaploids, containing an average of two sets of tomato chromosomes and one set from the wild parent. RFLP analysis with six tomato nuclear probes of known chromosomal locations revealed no major variation among the 44 hybrid plants surveyed. However, it also showed the presence of both parent-specific alleles and the loss of some and the presence of a few non-parental alleles, indicating rearrangement and/or recombination of the nuclear DNA. The relevance of the molecular and cytological methods and the potential use of somatic hybrids for plant breeding are demonstrated. Received: 20 July 1997 / Accepted: 6 October 1997  相似文献   

16.
Summary In a cytogenetic study of five annual Trifolium spp. the genetical relationships between (1) T. scutatum Boiss. and (2) T. plebeium Boiss., and between them and (3) T. carmeli Boiss., (4) T. echinatum M. B. and (5) T. latinum Seb., were studied in intra- and interspecific F1 and F2 hybrids. Germination, seedlings development, pollen fertility and chromosome configurations during meiosis and seedset were recorded. All the T. scutatum x T. plebeium F1 were green, but the hybrids between either T. plebeium or T. scutatum and T. carmeli, T. echinatum or T. latinum were mainly albinos. Those that were green had a very high rate of mortality and the survivors produced many albino seedlings. Pollen fertility was about 60% in scutatum x plebeium F1s, and one of their eight bivalents was heteromorphic. Hybrids between either of these and T. carmeli, T. echinatum or T. latinum had 30–50% stainable pollen and had several multivalents, suggesting the existence of a system of chromosomal translocations in these species. Seed set was roughly correlated with pollen stainability. The nature of the isolation mechanisms operating between these species is discussed.Contribution from the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel. 1973 Series, No. 186-E. The work reported here was financed by Grant FG-IS-222 from the U.S. Department of Agriculture under P. L. 480.  相似文献   

17.
Five variable microsatellite loci are reported for the nonbiting midge species Chironomus riparius and Chironomus piger. All loci show considerable intraspecific variation and species‐specific alleles, which allow to discriminate among the two closely related species and their interspecific hybrids, and to estimate genetic diversity within and between populations. Additionally, the loci were localized on C. riparius polytene chromosomes to verify their single copy status and investigate possible chromosomal linkage. The described markers are used in different studies with regard to population and ecological genetics and evolutionary ecotoxicology of Chironomus.  相似文献   

18.
Dwarfing polish wheat is a dwarfing accession of Triticum polonicum L. from Xinjiang of China. In the present study, the artificial hybridization between dwarfing polish wheat and two accessions of Aegilops tauschii Cosson. (AS60 and AS65) was carried out, and the F1 hybrids were obtained successfully without using embryo rescue techniques for the first time. The crossabilities of hybrids T. polonicum × Ae. tauschii (AS60) and T. polonicum × Ae. tauschii (AS65) were 1.67% and 0.60% respectively. Only the hybrids of T. polonicum × Ae. tauschii (AS60) germinated well, and 24 F1 hybrid plants were obtained. All the F1 hybrid plants grew vigorously, and the morphological traits were similar to bread wheat. The F1 plants had some obvious traits inherited from T. polonicum and Ae. tauschii and were completely sterile. Chromosome pairing in the hybrid was characterized by a large number of univalents, with an average of 20.56 and 0.22 bivalents per PMC, and no ring bivalents and multivalents were observed. Furthermore, the potential value of the F1 hybrids between T. polonicum and Ae. tauschii for studying wheat origin and breeding are discussed. The article is published in the original.  相似文献   

19.
Chromosomal pairing of one triploid and three tetraploid plants of rye, Secale cereale, was analyzed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I cells. Prophase I is characterized by: (i) the weak alignment showed by the three or four unsynapsed or partially homologous synapsed axes; (ii) the low number ber of pairing partner switches (PPSs) displayed by both trivalents and quadrivalents; and (iii) the existence of complex multivalents in which up to 13 chromosomes in the triploid and 22 chromosomes in the tetraploids were involved. However, only few heterologous chromosomal associations were maintained at metaphase I. The results obtained are discussed under the assumptions of the random end pairing model with some modifications.  相似文献   

20.
The female chromosome complement of the thelytokous stick insect Carausius morosus Br. consists of three metacentric sex chromosomes, four metacentric and 57 acrocentric autosomes. The rare impaternate males have two sex chromosomes. The spermatogenesis is highly aberrant which is evident from the various numbers of univalents, homomorphic and unequal bivalents, and multivalents during first metaphase, and from abnormal segregation patterns during first and second anaphase. The abnormalities are due to aneuploidy and structural heterozygosity. The heterozygosity is maintained by the endomeiotic chromosome duplication in females. Translocations resulting from chiasmata in unequal associations are not formed during female meiosis. It has been discussed that the heterozygosity in males, and consequently in females, is caused by either chromosomal mutations, as indicated by at least ten interchanges and three inversions, or hybridization, indicated by allotriploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号