首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumors metastatic to the bone produce factors that cause massive bone resorption mediated by osteoclasts in the bone microenvironment. Colony stimulating factor (CSF-1) is strictly required for the formation and survival of active osteoclasts, and is frequently produced by tumor cells. Here we hypothesize that the CSF-1 made by tumor cells contributes to bone destruction in osteolytic bone metastases. We show that high level CSF-1 protected osteoclasts from suppressive effects of transforming growth factor β (TGF-β). r3T cells, a mouse mammary tumor cell line that forms osteolytic bone metastases, express abundant CSF-1 in vitro as both a secreted and a membrane-spanning cell-surface glycoprotein, and we show that both the secreted and the cell-surface form of CSF-1 made by r3T cells can support osteoclast formation in co-culture experiments in the presence of RankL. Mice with r3T bone metastases have elevated levels of both circulating and bone-associated CSF-1, and the majority of CSF-1 found in bone metastases is associated with the tumor cells. These results support the idea that tumor-cell produced CSF-1 contributes to osteoclast development and survival in bone metastasis.  相似文献   

2.
3.
Iizuka T  Kohgo T  Marks SC 《Tissue & cell》2002,34(2):103-108
The osteopetrosis (op) mutation in mice is characterized by generalized skeletal sclerosis; reduced numbers of osteoclasts, macrophages, and monocytes; and failure to be cured by bone marrow transplantation. This mutation has been shown to result from an absence of colony-stimulating factor-1 (CSF-1) and reported to be cured by treatment with CSF-1. Macrophage polykaryons are known to be formed by fusion of mononuclear precursors and the presence of subcutaneous implants can elicit the formation of macrophage polykaryons. In order to determine if recruitment of foreign body giant cells is also impaired in osteopetrotic mice, tissue reactions to subcutaneously implanted polyvinyl sponges were studied and compared with normal mice. Our result showed that, in the op mouse, recruitment of macrophages and foreign body giant cells in response to the implants was quantitatively not different from that of normal mice. However, these cells were smaller and did not migrate as deeply into the implant as those seen in normal littermates. In contrast, resident macrophages obtained by peritoneal lavage were significantly reduced in op mice. These data indicate that there is a deficiency in the ability of op mice to mount a foreign body giant cell response to an implanted sponge characterized by a deficiency in the recruitment of precursor cells that are capable of either full development and spreading or migration into the implanted sponge. These data add to the emerging appreciation of the regional differences among macrophage populations in their dependence on CSF-1 for differentiation and survival.  相似文献   

4.
5.
Correlative evidence suggests that maternal production of the mononuclear phagocyte growth factor colony stimulating factor-1 (CSF-1) regulates placental development. In order to study the role of CSF-1 in pregnancy the fertility of CSF-1-less osteopetrotic (op/op) mutant mice was investigated. Homozygous mutant crosses (op/op x op/op) were consistently infertile. As expected, op/op males were almost completely fertile when crossed with heterozygous females. Surprisingly, op/op females when mated to heterozygote males were fertile, although at a rate that was 46% of the rate for +/op females x op/op males. These data suggest that CSF-1 is required for pregnancy. However, a maternal CSF-1 source is not absolutely necessary in that pregnancies involving +/op fathers were partially rescued, suggesting that +/op fetuses and/or +/op seminal fluid provides CSF-1 or CSF-1-induced factors which compensate for the absence of maternally produced CSF-1. Despite the complete absence of CSF-1 in the uterus and placenta of op/op mice placental weights were normal, suggesting that proliferation of decidual cells and trophoblasts, both of which express the CSF-1 receptor, may not be solely regulated by CSF-1. Histochemical staining for F4/80 antigen was used to identify macrophages in the uterus and placenta. Uterine macrophages could not be detected in virgin op/op mice although they were abundant in +/op uteri. Interestingly, macrophages could be detected in op/op uteri as uncharacteristically rounded cells in early gestation, however, they were not maintained and no macrophages were apparent beyond Day 14 of pregnancy in op/op mice. Further studies in the osteopetrotic mouse will be useful in delineating those functions required for pregnancy that are regulated by CSF-1.  相似文献   

6.
A novel assay was developed to measure ratio of p-FMS (phospho FMS) to FMS using the Meso Scale Discovery® (MSD) technology and compared to the routinely used, IP-Western based approach. The existing IP-Western assay used lysed PBMCs (Peripheral Blood Mononuclear Cells) that were immunoprecipitated (IP) overnight, and assayed qualitatively by Western analysis. This procedure takes three days for completion. The novel IP-MSD method described in this paper employed immunoprecipitation of the samples for one hour, followed by assessment of the samples by a ruthenium labeled secondary antibody on a 96-well Streptavidin-coated MSD plate. This IP-MSD method was semi-quantitative, could be run in less than a day, required one-eighth the volume of sample, and compared well to the IP-Western method. In order to measure p-FMS/FMS, samples from healthy volunteers (HV) were first stimulated with CSF-1(Macrophage colony-stimulating factor) to initiate the changes in the phosphotyrosyl signaling complexes in FMS. The objective of the present work was to develop a high throughput assay that measured p-FMS/FMS semi-quantitatively, with minimal sample requirement, and most importantly compared well to the current IP-Western assay.  相似文献   

7.
Colony stimulating factor-1 receptor (CSF-1R or FMS) and it ligand, CSF-1, signaling regulates the differentiation and function of tumor-associated macrophages (TAMs) that play an important role in tumor progression. Derivatives of thieno[3,2-d]pyrimidine were synthesized and evaluated as kinase inhibitors of FMS. The most representative compound 21 showed strong activity (IC50?=?2?nM) against FMS kinase and served as candidate for proof of concept. Anti-tumor activity alone and/or in combination with paclitaxel was examined via a tumor cell growth inhibition assay and via an in vitro tumor invasion assay using human breast adenocarcinoma cells.  相似文献   

8.
9.
Osteopetrosis is an inherited metabolic disease characterized by an excessive accumulation of bone. This is associated with an osteoclast deficiency. Osteopetrosis is always accompanied by the failure and/or delay of tooth eruption. The present study was conducted to examine in detail the morphological and histological changes of growth of the third molars in the osteopetrosis (op/op) mouse. At the age of 10 days, normal and op/op mice showed no detectable difference in the shape of the third molar follicles. However, the third molars in the op/op mouse became obscured by the proliferation of neighboring bone trabeculae. Moreover, no tartrate-resistant acid phosphatase-positive cells were detected on the bone surfaces of 10-day-old op/op mice. Ankylosis between the root dentin and proliferating bone trabeculae was a common feature in the 20- and 30-day-old op/op mice. The third molars erupted into the oral cavity before the age of 30 days in normal mice, and the crowns, roots, and periodontal ligaments appeared well developed. Throughout the experiment, it seemed that the primary cause of the microdontia and ankylosis of the developing root in the mutant mouse was a deficiency of osteoclasts, with attendant lack of bone remodeling.  相似文献   

10.
The active vitamin D(3)-metabolite 1,25(OH)(2)D(3) inhibits the interleukin 4/granulocyte-macrophage colony-stimulating factor (IL-4/GM-CSF)-induced differentiation of human monocytes into dendritic cells without altering survival. Colony-stimulating factor 1 (CSF-1) is an important survival factor for cells of the monocytic lineage. We therefore investigated whether the inhibitory activity of 1,25(OH)(2)D(3) is paralleled by a regulation of CSF-1 and its receptor. Purified human monocytes were cultured together with IL-4/GM-CSF in the presence of 1,25(OH)(2)D(3), its analogue tacalcitol, the low-affinity vitamin D receptor ligand 24,25(OH)(2)D(3), or the solvent ethanol for up to 5 days. Expression of CSF-1, CSF-1R, and GM-CSF mRNA was measured by RT-PCR. Protein secretion for CSF-1 was measured by ELISA, expression of CSF-1R by flow cytometry. The results showed that 1,25(OH)(2)D(3) and tacalcitol significantly up-regulated CSF-1 mRNA-expression and protein secretion in a dose-dependent manner. The effect of 1,25(OH)(2)D(3) occurred already after 1h of pre-treatment. In contrast, CSF-1R mRNA- and cell surface-expression was down-regulated simultaneously. The solvent ethanol and 24,25(OH)(2)D(3) were without effect. GM-CSF mRNA expression was not modulated in 1,25(OH)(2)D(3)-treated cells. These data point towards a distinct and specific regulation of CSF-1 and its receptor by 1,25(OH)(2)D(3) and its analogue tacalcitol in human monocytes which parallels the inhibition of differentiation into dendritic cells without altering survival.  相似文献   

11.
Osteopetrotic (op/op) mice are known to commonly show a failure of tooth eruption. It is also well understood that masticatory function is highly associated with the craniofacial morphology of the growing mouse; however, the effects on sutural growth have not been studied. The present study was conducted to examine, in detail, the morphological and histological changes of the nasopremaxillary suture in these mutant mice and to assess a role of mechanical stress from mastication in the sutural growth. The width of the nasopremaxillary suture was measured on the section for the superior (P1), middle (P2), and inferior (P3) levels. The width of the nasopremaxillary suture for the P1 level in the normal mice fed a solid diet was significantly smaller in 30-day-old mice than in 15-day-old mice, whereas the width for the level P3 was significantly greater in the 30-day-old mice than in the 15-day-old mice. These changes in the sutural space were more prominent in the normal mice fed a solid diet than in the normal mice fed a granular diet. The sutural widths for all the levels became smaller in the 30-day-old op/op mice than in the 10-day-old op/op mice. The endocranial area of the nasopremaxillary suture showed synostosis in 30-day-old op/op mice. In both the normal and op/op mice, the number of tartrate-resistant acid phosphatase (TRAP)-positive cells was greatest at the age of 15 days. Moreover, the TRAP-positive cell number was smaller in the op/op mice than in the normal mice for all the experimental stages. Since, in general, mastication begins in mice after tooth eruption, i.e. from 15 to 30 days after birth, the present findings suggest that failure of tooth eruption and the reduced masticatory function restrict sutural modification.  相似文献   

12.
The fibers of the anterior belly digastric muscle of mice, fed a granulated diet for various periods, have been studied histochemically and morphometrically. The diameters of the anterior belly digastric fibers in normal mice fed only a granulated diet were smaller than those in mice fed a solid diet. Differences in the succinate dehydrogenase (SDH) activity of muscle fibers between op/op and normal mice gradually appeared in the anterior belly digastric muscle and, by the age of 90 days, under-development of muscle fibers was observed in the mild-belly region of the anterior belly digastric muscle of op/op mice fed a granulated diet. These results indicate mechanical stress in mastication plays an important role in the development of the anterior belly digastric muscle structures.  相似文献   

13.
It is well known that cranial flat bone experiences growth and development at the sutural interface, which is regarded as a neutral zone to control mechanical stimuli. In osteopetrotic (op/op) mice, meanwhile, cranial deformation is produced by the deficiency of osteoclasts and the subsequent defect of bone resorption. It would be a reasonable assumption that such disturbance in bone remodeling affects sutural modification and the relevant cranial flat bone development. The present study was thus conducted to examine histological features of the sagittal sutures in op/op mice, with special reference to the relevant bone remodeling. The sagittal sutures in 10-, 15-, 30-, and 60-day-old normal and op/op mice were observed microscopically. Furthermore, osteoclastic activity was evaluated on the sections stained with tartrate-resistant acid phosphatase (TRAP). The sutures of 15-day-old op/op mice showed stenosis and synostosis, and less-developed collagen fibers associated with an irregular arrangement of fibroblasts, whereas these changes were rarely found in normal mice. Osteoclasts were hardly detected in the parietal bones around the sutures of op/op mice, although the number was numerous in normal mice. These results emphasize that congenital deficiency in osteoclast produces unbalanced bone remodeling at the sutural interface and on the surfaces of the cranial bones, which is assumed to be closely related to cranial bone deformity in op/op mice.  相似文献   

14.
Osteolytic bone diseases are closely linked to the over-activation of osteoclasts and enhancement of bone resorption. It has become a major health issue in orthopedic practice worldwide. Inhibition of osteoclasts is proposed to be the main treatment for osteolytic disorders. Diosmetin (DIO) is a natural flavonoid with properties of antioxidant, anti-infection, and antishock. The effect of DIO on osteoclast differentiation is poorly understood. In this study project, we found that DIO could inhibit osteoclastic formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in a dose-dependent manner. The expression of the osteoclast differentiation marker genes, cathepsin K, nuclear factor of activated T-cells 1 (NFATc1), Acp5, Ctr, Atp6v0d2, and Mmp9 were also decreased by the treatment of DIO. In addition, DIO attenuated the formation of actin ring and the ability of bone resorption. Further, the western blotting showed that DIO inhibits the phosphorylation of the mitogen-activated protein kinases signaling pathway induced by RANKL, accompanied by the downregulation of NFATc1 and c-Fos expression. We also found that DIO could reduce the accumulation of reactive oxygen species (ROS) induced by RANKL. In vivo, the study revealed that DIO can significantly reduce LPS-induced osteolysis in mice. Collectively, our study shows that DIO can inhibit osteoclast formation and activation, and could serve as a potential therapeutic drug for osteolytic bone diseases.  相似文献   

15.
Strategies to improve retinal progenitor cell (RPC) capacity to yield proliferative and multipotent pools of cells that can efficiently differentiate into retinal neurons, including photoreceptors, could be vital for cell therapy in retinal degenerative diseases. In this study, we found that insulin-like growth factor-1 (IGF-1) plays a role in the regulation of proliferation and differentiation of RPCs. Our results show that IGF-1 promotes RPC proliferation via IGF-1 receptors (IGF-1Rs), stimulating increased phosphorylation in the PI3K/Akt and MAPK/Erk pathways. An inhibitor experiment revealed that IGF-1-induced RPC proliferation was inhibited when the PI3K/Akt and MAPK/Erk pathways were blocked. Furthermore, under the condition of differentiation, IGF-1-pretreated RPCs prefer to differentiate into retinal neurons, including photoreceptors, in vitro, which is crucial for visual formation and visual restoration. These results demonstrate that IGF-1 accelerates the proliferation of RPCs and IGF-1 pretreated RPCs may have shown an increased potential for retinal neuron differentiation, providing a novel strategy for regulating the proliferation and differentiation of retinal progenitors in vitro and shedding light upon the application of RPCs in retinal cell therapy.  相似文献   

16.
The potent and selective 3-amido-4-anilinoquinoline CSF-1R inhibitor AZ683 suffered from cardiovascular liabilities, which were linked to the off-target activities of the compound and ion channel activity in particular. Less basic and less lipophilic examples from both the quinoline and cinnoline series demonstrated cleaner secondary pharmacology profiles. Cinnoline 31 retained the required potency and oral PK profile, and was progressed through the safety screening cascade to be nominated into development as AZD7507.  相似文献   

17.
Optimization of novel azetidine compounds, which we had found as colony stimulating factor-1 receptor (CSF-1R) Type II inhibitors, provided JTE-952 as a clinical candidate with high cellular activity (IC50?=?20?nM) and good pharmacokinetics profile. JTE-952 was also effective against a mouse collagen-induced model of arthritis (mouse CIA-model). Additionally, the X-ray co-crystal structure of JTE-952 with CSF-1R protein was shown to be a Type II inhibitor, and the kinase panel assay indicated that JTE-952 had high kinase selectivity.  相似文献   

18.
Immunization of experimental autoimmune encephalomyelitis (EAE)‐prone C57BL/6 mice with MOG35‐55 (a model used to study aspects of human multiple sclerosis) is known to lead to the production of various abzymes. The production of catalytic IgGs that can efficiently hydrolyse myelin basic protein (MBP), MOG and DNA is associated with changes in the profile of differentiation and level of proliferation of mice bone marrow haematopoietic stem cells (HSCs). As MOG simulates the production of abzymes with high DNase activity, we compared the effects of DNA and MOG immunization on EAE‐prone mice. In contrast to MOG, immunization with DNA leads to a suppression of proteinuria, a decrease in the concentrations of antibodies to MOG and DNA and a reduction in abzyme production. Immunization with DNA only resulted in a significant increase in DNase activity over 40 days where it became 122‐fold higher than before immunization, and fivefold higher when comparing to the maximal activity obtained after MOG treatment. DNA and MOG immunization had different effects on the differentiation profiles of HSCs, lymphocyte proliferation, and the level of apoptosis in bone marrow and other organs of mice. The data indicate that for C57BL/6 mice, DNA may have antagonistic effects with respect to MOG immunization. The usually fast immune response following MOG injection in C57BL/6 mice is strongly delayed after immunization with DNA, which is probably due to a rearrangement of the immune system following the response to DNA.  相似文献   

19.
We report the discovery of a novel azetidine scaffold for colony stimulating factor-1 receptor (CSF-1R) Type II inhibitors by using a structure-based drug design (SBDD) based on a docking model. The work leads to the representative compound 4a with high CSF-1R inhibitory activity (IC50?=?9.1?nM). The obtained crystal structure of an azetidine compound with CSF-1R, which matched our predicted docking model, demonstrates that the azetidine compounds bind to the DFG-out conformation of the protein as a Type II inhibitor.  相似文献   

20.
Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号