首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryos were cultured in vitro in medium with serum containing interferon which had been induced in vivo by intravenous administration of polyinosine-polycytidylic acid. Two-cell and blastocyst-stage embryos were incubated for 72 and 24 h respectively before embryo transfer, or fixation to determine cell number. Further, blastocysts were outgrown on coverslips in embryo culture medium with fetal calf serum and interferon. Expression of an intermediate filament protein (Mr 55 000) in blastocyst outgrowths was examined with a monoclonal antibody. Embryos appeared morphologically normal and after treatment the mean cell number did not differ from that of controls. Implantation was unaffected by any of the treatments, but culture before transfer in medium containing mouse serum reduced the number of normal fetuses recovered on Day 14 of gestation compared to those cultured in medium without serum. Exposure to interferon did not modify the expression of filaments in the outgrown blastocyst. It is therefore unlikely that interferon induced by viral infection during pregnancy is responsible for preimplantation embryonic loss.  相似文献   

2.
3.
Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Sequential culture and coculture are two methods of improving the development of preimplantation embryos in vitro. Direct comparison of the efficiency of these methods is limited. Proliferation and apoptosis determine the total number of blastomere in preimplantation embryo, which is a sensitive parameter for evaluation of the development of embryo in vitro. In this study, we compared the proliferation and apoptosis of mouse embryo in different culture media, including CZB, KSOM, MTF, G1.2/G2.2 sequential culture media, and in human oviductal cell coculture. Sequential culture using G1.2/G2.2 was superior to KSOM, MTF, and CZB/CZB + G with respect to the formation of 3-4 cell embryos, morula, and blastocyst. G1.2/G2.2 cultured blastocyst had significantly more proliferating blastomeres and higher total cell number per blastocyst than those cultured in KSOM or CZB/CZB + G. Compared to embryos cultured in G1.2/G2.2, embryos cocultured in G1.2/G2.2 hatched more frequently. Cocultured blastocysts also had significantly higher percentage of proliferating cell and lower percentage of apoptotic cell per blastocyst than those cultured in G1.2/G2.2. It was concluded that G1.2/G2.2 facilitated the proliferation of blastomere whilst human oviductal cell coculture suppressed apoptosis in addition to stimulating proliferation of blastomere.  相似文献   

5.
6.
The distribution of the cytokeratin network in the intact preimplantation mouse embryo and the role of cytokeratin filaments in trophectoderm differentiation were investigated by means of whole-mount indirect immunofluorescence microscopy and microinjection of anti-cytokeratin antibody. Assembled cytokeratin filaments were detected in some blastomeres as early as the compacted 8-cell stage. The incidence and organization of cytokeratin filaments increased during the morula stage, although individual blastomeres varied in their content of assembled filaments. At the blastocyst stage, each trophectoderm cell contained an intricate network of cytokeratin filaments, and examination of sectioned blastocysts confirmed that extensive arrays of cytokeratin filaments were restricted to cells of the trophectoderm. Microinjection of anticytokeratin antibody into individual mural trophectoderm cells of expanded blastocysts resulted in a dramatic rearrangement of the cytokeratin network in these cells. Moreover, antibody injection into 2-cell embryos inhibited assembly of the cytokeratin network during the next two days of development. Despite this disruption of cytokeratin assembly, the injected embryos compacted and developed into blastocysts with normal morphology and nuclear numbers. These results suggest that formation of an elaborate cytokeratin network in preimplantation mouse embryos is unnecessary for the initial stages of trophectoderm differentiation resulting in blastocyst formation.  相似文献   

7.
8.
9.
The degree of fragmentation during early cleavage is universally used as an indicator of embryo quality during human in vitro fertilization treatment. Extensive fragmentation has been associated with reduced blastocyst formation and implantation. We examined the relationship between early fragmentation and subsequent allocation of cells to the trophectoderm and inner cell mass in the human blastocyst. We retrospectively analyzed data from 363 monospermic human embryos that exhibited varying degrees of fragmentation on Day 2. Embryos were cultured from Day 2 to Day 6 in Earle balanced salt solution with 1 mM glucose and human serum albumin. Rates of development and blastocyst formation were measured. The number of cells in the trophectoderm and inner cell mass and the incidence of apoptosis were assessed following differential labeling with polynucleotide-specific fluorochromes. Increasing fragmentation resulted in reduced blastocyst formation and lower blastocyst cell numbers. For minimal and moderate levels of fragmentation, the reduction in cell numbers was confined largely to the trophectoderm and a steady number of inner cell mass cells was maintained. However, with extensive fragmentation of more than 25%, cell numbers in both lineages were reduced in the few embryos that formed blastocysts. Apoptotic nuclei were present in both the trophectoderm and inner cell mass, with the lowest incidence in blastocysts that had developed from embryos with minor (5-10%) fragmentation. Paradoxically, higher levels of apoptosis were seen in embryos of excellent morphology, suggesting a possible role in regulation of cell number.  相似文献   

10.
The distribution of total polyadenylated RNA and mRNAs from the beta-actin, fibronectin, and cytokeratin Endo A genes was examined in preimplantation mouse embryos using in situ hybridization of riboprobes to RNA in sections of embryos. Polyadenylated RNA was found in the cytoplasm of all cells of blastocyst-stage embryos, whereas the specific mRNAs displayed three distinct patterns of expression: uniform throughout the embryo (beta-actin), enriched in the inner cell mass (fibronectin), and enriched in the trophectoderm (Endo A). In eight-cell embryos, the polyadenylated RNA was more concentrated in nuclei than in the cytoplasm (as noted previously), although this was not the case in blastocysts, nor was it true for the specific mRNAs that were examined. These experiments demonstrate that there is localized gene expression in the early mouse embryo, which correlates with the formation of the trophectoderm and the inner cell mass.  相似文献   

11.
The effects of bisphenol A, a xenoestrogen widely used in industry and dentistry, were studied in early preimplantation mouse embryos. Two-cell mouse embryos were cultured with 100 pM to 100 microM bisphenol A with or without 100 nM tamoxifen and evaluated at 24-h intervals for their development to eight-cell and blastocyst stages. At 72 h, blastocysts were cultured for another 48 h without bisphenol A, and surface areas of trophoblast spread were measured. At 24 h, more embryos exposed to 3 nM bisphenol A than to controls had reached the eight-cell stage. At 48 h, more embryos exposed to 1 nM and 3 nM bisphenol A than to controls had become blastocysts. At 100 microM, bisphenol A decreased frequency of development to blastocysts. Tamoxifen counteracted both stimulatory and inhibitory effects of bisphenol A on blastocyst formation. Although bisphenol A did not alter blastocyst morphology or cell number, early exposure to 100 microM bisphenol A increased subsequent trophoblast areas. These findings suggest that bisphenol A may not only effect early embryonic development via estrogen receptors even at low, environmentally relevant doses, but also exert some late effects on subsequent development of these embryos.  相似文献   

12.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
We examined whether epidermal growth factor (EGF)-induced preimplantation mouse embryo development and function are mediated by EGF-specific protein tyrosine phosphorylation (PTP). In situ cross-linking and autophosphorylation studies showed that EGF receptor (EGF-R) in Day 4 mouse blastocysts is a protein of approximately 170 kDa that is phosphorylated when exposed to EGF and ATP. Furthermore, EGF induced about a twofold increase in protein tyrosine kinase (PTK) activity in Day 4 blastocysts when incubated in the presence of a peptide substrate with a tyrosine moiety and ATP. RG 50864, a specific inhibitor of EGF-dependent PTK, diminished autophosphorylation of the 170-kDa protein and completely blocked PTK activity in the blastocyst induced by EGF. However, this inhibitor did not affect EGF binding to the embryonic cell surface. In contrast, an inactive tyrphostin compound, RG 50862, did not alter EGF-induced PTK activity in the blastocyst. These findings led us to examine the effects of these tyrphostin compounds on preimplantation mouse embryo development and blastocyst hatching in vitro. RG 50864, in a dose-dependent manner, inhibited EGF-dependent development of 2-cell embryos to blastocysts and the number of cells per blastocyst. This inhibitor also antagonized EGF-induced zona-hatching of blastocysts formed from 8-cell embryos in culture. However, the inhibitor was not effective in deterring transforming growth factor-beta 1-induced blastocyst formation. The inactive compound, RG 50862, had no effects on EGF-dependent blastocyst formation or zona-hatching. The data show that the effects of RG 50864 are specific and mediated by inhibition of EGF-specific PTK activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Methyltransferases are an important group of enzymes with diverse roles that include epigenetic gene regulation. The universal donor of methyl groups for methyltransferases is S-adenosylmethionine (AdoMet), which in most cells is synthesized using methyl groups carried by a derivative of folic acid. Another mechanism for AdoMet synthesis uses betaine as the methyl donor via the enzyme betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5), but it has been considered to be significant only in liver. Here, we show that mouse preimplantation embryos contain endogenous betaine; Bhmt mRNA is first expressed at the morula stage; BHMT is abundant at the blastocyst stage but not other preimplantation stages, and BHMT activity is similarly detectable in blastocyst homogenates but not those of two-cell or morula stage embryos. Knockdown of BHMT protein levels and reduction of enzyme activity using Bhmt-specific antisense morpholinos or a selective BHMT inhibitor resulted in decreased development of embryos to the blastocyst stage in vitro and a reduction in inner cell mass cell number in blastocysts. The detrimental effects of BHMT knockdown were fully rescued by the immediate methyl-carrying product of BHMT, methionine. A physiological role for betaine and BHMT in blastocyst viability was further indicated by increased fetal resorption following embryo transfer of BHMT knockdown blastocysts versus control. Thus, mouse blastocysts are unusual in being able to generate AdoMet not only by the ubiquitous folate-dependent mechanism but also from betaine metabolized by BHMT, likely a significant pool of methyl groups in blastocysts.  相似文献   

15.
The aim of this study was to evaluate the possible effect of non-specific acute inflammation localized outside the reproductive tract on the quality of preimplantation embryos. In fertilized female mice two experimental models of inflammation were used—trinitrobenzene sulfonic acid colitis and carrageenan paw oedema. Inflammation was induced during the cleavage period of embryo development and embryos were collected at 92 h post hormonal synchronization. Stereomicroscopical evaluation of in vivo derived embryos showed that the presence of inflammation in the maternal body did not affect their basic developmental abilities, i.e. there were no significant differences in the proportion of early blastocysts, morulas, slowly developing embryos and degenerates between embryonic pools obtained from mothers with induced inflammation and control mothers. In the next step, non-degenerated embryos from all mothers were cultured in vitro under standard conditions for another 24 h, and the average cell number (fluorescence DNA staining) and the incidence of cell death (fluorescence viability staining combined with TUNEL assay) were evaluated. The majority of cultured embryos reached expanded blastocyst stage. There were no significant differences in the average cell numbers of blastocysts, but blastocysts derived from mothers with induced inflammation showed a significantly higher incidence of dead cells in both experiments. The majority of dead cells were of apoptotic origin. These results show that non-specific inflammation localized outside the reproductive tract has no detrimental effect on the preimplantation embryo growth; however it can affect the embryo quality.  相似文献   

16.
Transforming growth factor alpha (TGFA) is produced by epithelial cells in the oviducts and uteri and has the potential to act as an anti-apoptotic factor on preimplantation embryos expressing its receptor. Previously, we demonstrated that survivin (also known as BIRC5), an anti-apoptotic gene expressed in mouse preimplantation embryos, protects embryos from apoptosis. In this study, we investigated the role of survivin on TGFA-mediated inhibition of apoptosis in mouse blastocysts. Under the suboptimal conditions produced by single embryo culture, blastocysts showed an increase of apoptosis that correlated with a decrease of survivin expression. TGFA treatment significantly decreased apoptosis and increased the levels of survivin mRNA in a dose-dependent manner in blastocyst, and conversely, these activities were neutralized by an anti-TGFA antibody. Antibody treatment alone exerted little effect on either the occurrence of apoptosis or the levels of survivin mRNA. Upregulation of survivin expression by TGFA treatment was insignificant before the blastocyst stage. Using an antisense approach, we examined whether upregulation of survivin is responsible for the anti-apoptotic effect of TGFA in blastocysts. Apoptosis was inhibited by TGFA treatment in blastocysts, but the effect was abrogated by cotreatment with antisense oligonucleotides directed against survivin. These data suggest that survivin contributes to the anti-apoptotic activities of TGFA in blastocysts. We also found that the upregulation of survivin expression was mediated by activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Thus, TGFA inhibits apoptosis in mouse blastocysts through upregulation of survivin expression via the PI3K pathway.  相似文献   

17.
The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%–58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20–24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440–447, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
19.
In the present study, we investigated the effect of melatonin on the preimplantation development of porcine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Parthenogenetic embryos were cultured in mNCSU-23 supplemented with various concentrations of melatonin for 7 days. The results revealed that 100 pM was the optimal concentration, which resulted in significantly increased cleavage and blastocyst formation rates. Additionally, 100 pM melatonin provided the highest increase in total cell number of blastocysts. Therefore, the subsequent experiments were performed with 100 pM melatonin. ROS level in 2-8 cell stage embryos in the presence or absence of melatonin was evaluated. Embryos cultured with melatonin showed significantly decreased ROS. Blastocysts cultured with melatonin for 7 days were analyzed by the TUNEL assay. It was observed that melatonin not only increased (P < 0.05) the total cell number but also decreased (P < 0.05) the rate of apoptotic nuclei. Blastocysts cultured with melatonin were assessed for the expression of apoptosis-related genes Bcl-xl and Bax, and of pluripotency marker gene Oct-4 by real-time quantitative PCR. Analysis of data showed that the expression of Bcl-xl was higher (1.7-fold) compared to the control while the expression of Bax was significantly decreased relative to the control (0.7-fold) (P < 0.05). Moreover, the expression of Oct-4 was 1.7-fold higher than the control. These results indicated that melatonin had beneficial effects on the development of porcine parthenogenetic embryos. Based on the findings of parthenogenetic embryos, we investigated the effect of melatonin on the development of porcine SCNT embryos. The results also demonstrated increased cleavage and blastocyst formation rates, and the total cell numbers in blastocysts were significantly higher when the embryos were cultured with melatonin. Therefore, these data suggested that melatonin may have important implications for improving porcine preimplantation SCNT embryo development.  相似文献   

20.
The present study determines the effect of a specific and an irreversible inhibitor of histidine decarboxylase (HDC), α-fluoromethylhistidine (α-FMH) on the mouse preimplantation embryo development in vitro. The embryo culture technique was used to assess the effect of α-FMH. Embryos recovered at 0800–0900 hr (AM) on day 3 of pregnancy were 4–8 cells, whereas those recovered at 1600–1630 hr were mostly 8-cell compacted embryos. Of the day 3-AM embryos, 81.3 ± 4.3% developed to blastocysts within 48 hr when cultured in the medium alone, but addition of α-FMH (0.19 or 0.38 mM) drastically reduced the blastocyst formation to 26.6 ± 7 or 16.8 ± 4.3%. Most of them were arrested before the compaction stage. Addition of L-histidine, the substrate for HDC, did not alter the inhibition of blastocyst formation in the presence of α-FMH (37.2 ± 10.9%). Of the day 3-PM embryos, 99.3 ± 0.7% developed to blastocyst stage when cultured in the medium alone and addition of α-FMH (0.19 or 0.38 mM) did not affect the embryo development (92.1 ± 4.3 or 81.9 ± 9.9% developed to blastocysts). The birth of healthy young following transfer of these blastocysts into pseudopregnant mice indicates normal development of the embryos under this condition. The results suggest that histamine synthesis may be required for the process of compaction and thus the formation of blastocyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号