首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantitative analysis of peptide synthesis via transfer of the acyl moiety from the activated donor (S) to the nucleophile (N), catalysed by proteases forming an acylenzyme intermediate, has been continued. The new kinetic model takes into account the hydrolysis of an acylenzyme-nucleophile complex (EAN). The intensity of the hydrolysis is characterized by parameter gamma equal to the ratio of the rate constant of EAN hydrolysis and the rate constant of peptide formation. The ability of the EAN complex to hydrolyse leads to a decrease in the apparent nucleophile reactivity (beta) of the aminocomponent. As a result, the maximal fractional conversions of S and N to the peptide decrease, and the apparent nucleophile reactivity becomes dependent on the nucleophile concentration. The pattern of parameter gamma influence on maximal fractional conversions depends on which component is in an excess. It is with the donor excess that hydrolysis of the EAN complex affects the peptide yield dramatically. Analytical expressions for the estimation of maximal product concentration were obtained and their accuracy evaluated.  相似文献   

2.
The partitioning of the acyl-enzyme between aminolysis by an added nucleophile and hydrolysis plays a key-role in protease-catalyzed acyl transfer reactions. It can be characterized by the partition constant, which is equal to the nucleophile concentration for which aminolysis and hydrolysis proceed at the same velocity. We describe a method for calculation of the partition constant from the product ratio which is based on the integrated rate equation. Therefore, it can be applied to reactions performed under synthesis-like conditions, i.e. a high degree of nucleophile consumption during the reaction. In principle, the dependence of the partition constant on nucleophile concentration can be determined from a single reaction. V8-protease-catalyzed acyl transfer reactions using Z-Glu-OMe as acyl donor and amino acid amides as nucleophiles were investigated as an application of the method. The central role of the partition constant in optimization of preparative protease-catalyzed acyl transfer reactions is discussed.  相似文献   

3.
The partitioning of the acyl-enzyme between aminolysis by an added nucleophile and hydrolysis plays a key-role in protease-catalyzed acyl transfer reactions. It can be characterized by the partition constant, which is equal to the nucleophile concentration for which aminolysis and hydrolysis proceed at the same velocity. We describe a method for calculation of the partition constant from the product ratio which is based on the integrated rate equation. Therefore, it can be applied to reactions performed under synthesis-like conditions, i.e. a high degree of nucleophile consumption during the reaction. In principle, the dependence of the partition constant on nucleophile concentration can be determined from a single reaction. V8-protease-catalyzed acyl transfer reactions using Z-Glu-OMe as acyl donor and amino acid amides as nucleophiles were investigated as an application of the method. The central role of the partition constant in optimization of preparative protease-catalyzed acyl transfer reactions is discussed.  相似文献   

4.
The selectivity of preparations of alpha-chymotrypsin immobilized on Celite or polyamide and carrying out syntheses of di- and tripeptides in acetonitrile medium were studied. The study concerns the effect of mass-transfer limitations on three different kinds of selectivity: acyl donor, stereo- and nucleophile selectivities, defined respectively as the ratio of initial rates with different acyl donors; the enantioselectivity factor (E); and the ratio of initial rates of peptide synthesis and hydrolysis of the acyl donor. Strong mass-transfer limitations caused by increased enzyme loading had a very strong effect on acyl donor selectivity, with reductions of up to 79%, and on stereoselectivity, with reductions of up to 77% in relation to optimum values, both on Celite. Nucleophile selectivity was not affected as strongly by mass-transfer limitations. Using a small molecule (AlaNH(2)) as nucleophile, the onset of these limitations caused only minor reductions in selectivity, while when using a larger nucleophilic species (AlaPheNH(2)) it was reduced by up to 60% when increasing enzyme loading on Celite from 2 to 100 mg/g. The different way these kinds of selectivity are affected by the onset of mass-transfer limitations can be explained by a combination of different aspects: the kinetic behavior of the enzyme toward nucleophile and acyl donor concentrations, the relative concentrations of reagents used in the reaction media, and their relative diffusion coefficients. In short, higher concentrations of nucleophile than acyl donor are generally used, and the nucleophile most often used in the experiments hereby described (AlaNH(2)) diffuses faster than the acyl donors employed. These factors combined are expected to give rise to concentration gradients inside porous biocatalyst particles higher for acyl donor than for nucleophile under conditions of mass-transfer limitations. This explains why acyl donor selectivity and stereoselectivity are much more influenced by mass transfer limitations than nucleophile selectivity.  相似文献   

5.
The substrate specificities of alpha-chymotrypsin and subtilisins for peptide synthesis in hydrophilic organic solvents were investigated. Chymotrypsin exhibited high specificity to aromatic amino acids as acyl donors, while subtilisin Carlsberg and subtilisin BPN' were specific to aromatic and neutral aliphatic amino acids, in accordance with the S1 specificities of the enzymes for peptide hydrolysis in aqueous solutions. On the contrary, chymotrypsin exhibited higher specificities to hydrophilic amino acid amides as acyl acceptors (nucleophiles) for peptide synthesis with N-acetyl-L-tyrosine ethyl ester, in contrast to the S1' specificity for peptide hydrolysis and peptide synthesis in aqueous solutions. Furthermore, nucleophile specificity changed with the change in water-organic solvent composition; the increase in water content led to increase in relative reactivity of leucinamide to that of alaninamide. It was also found that protection of the carboxyl group of alanine by amidation is much preferable to protection by esterification in terms of reactivity as nucleophiles.  相似文献   

6.
A proteinase isolated from Thermus RT41a was immobilized to controlled pore glass beads and was used in the free and immobilized forms for peptide synthesis. The observed maximum yield was the same in both cases. a number of dipeptides were produced from amino acid esters and amides. The best acyl components, from those tested, were found to be Ac-Phe-OEt and Bz-Ala-OMe. Tur-NH(2), Trp-NH(2), Leu-pNA, and Val-pNA were all reactive nucleophiles.The kinetically controlled synthesis of Bz-ala-Tyr-NH(2) was optimized by studying the effect of pH, temperature, solvent concentration, ionic strength, and nucleophile and acyl donor concentration, ionic strength, and nucleophile and acyl donor concentration on the maximum yield. The initial conditions used were 25 mM Bz-ala-OMe, 25 mM Tyr-NH(2), 70 degrees C, pH 8.0, and 10% v/v dimethylformamide (DMF). The optimum conditions were 90% v/v DMF using 80 mM bz-Ala-OMe and 615 mM Tyr-NH(2) at 40 degrees C and pH 10. These conditions increased the maximum conversion from 0.75% to 26% (of the original ester concentration). In a number of other cosolvents, the best peptide yields were observed with acetonitrile and ethyl acetate. In 90% acetonitrile similar yields were observed to those in 90% DMF under optimized conditions except that the acyl donor and nucleophile concentrations could be reduced to 25 mM and 100mM, respectively. The effect of the blocking group on the nucleophile was also investigated; -betaNA and -pNA as blocking groups improved the yields markedly. The blocking and leaving groups of the acyldonor had no effect on the dipeptide yield. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
8.
Benzyloxycarbonyl-L-proline p-guanidinophenyl ester is an "inverse substrate" for trypsin; i.e., the cationic center is included in the leaving group instead of being in the acyl moiety. This substrate can be used in trypsin-catalyzed acyl-transfer reactions leading to the synthesis of Pro-Xaa peptide bonds. The reaction proceeds about 20 times slower than reaction with similar alanine-containing substrates, but the ratio between synthesis and hydrolysis is more favorable. The investigation of a series of nucleophiles led to information about the specificity of the process. Nucleophiles differing only in the P(1)'-position show an increasing acyl transfer efficiency in the order Phe < Gly < Ley < Ser < Ala < lle. C terminal elongation of the nucleophiles is of minor influence on their efficiency. The formation of an H bond between the acyl-enzyme and the nucleophile seems to play an important role in the aminolysis of the acyl-enzyme.  相似文献   

9.
An apparatus that allows continuous analysis of protease-catalyzed acyl transfer reactions is described. Hydrolysis reaction is assayed using automatic titration. A continuous determination of amino group concentration by reaction with o-phthalaldehyde gives the rate of peptide bond formation. The apparatus allows the determination of the partition constant for the nucleophile at various nucleophile concentrations from one run.  相似文献   

10.
11.
Hederos S  Baltzer L 《Biopolymers》2005,79(6):292-299
The acyl transfer reaction of S-glutathionyl benzoate (GSB) is catalyzed by a rationally designed mutant of human glutathione transferase A1-1, A216H. The catalyzed reaction proceeds via the formation of an acyl intermediate and has been studied in the presence of nitrogen, oxygen, and sulfur nucleophiles to determine the selectivity with regards to nucleophile structure. Methanol was previously shown to react with the acyl intermediate and form the corresponding ester, methylbenzoate, under a significant rate enhancement. In the present investigation, the dependence on nucleophile structure and reactivity has been investigated. Ethane thiol gave rise to a larger rate enhancement in the enzyme-catalyzed reaction than ethanol, whereas ethylamine did not increase the reaction rate. The reactivities toward the acyl intermediate of primary and secondary alcohols with similar pKa values depended on the structure of the aliphatic chain, and 1-propanol was the most efficient alcohol. The reactivity of the oxygen nucleophiles was also found to depend strongly on pKa as 2,2,2-trifluoroethanol, with a pKa of 12.4, was the most efficient nucleophile of all that were tested. Saturation kinetics was observed in the case of 1-propanol, indicating a second binding site in the active site of A216H. The nucleophile selectivity of A216H provides the knowledge base needed for the further reengineering of A216H towards alternative substrate specificities.  相似文献   

12.
An important nutritional dipeptide precursor, benzoyloxycarbonyl protected L-alanyl-L-glutamine (Z-Ala-Gln), was successfully prepared through a kinetically controlled enzymatic peptide synthesis method. A commercially available and low-cost protease (papain) was used as biocatalyst with Z-Ala-OMe and Gln as acyl donor and nucleophile, respectively. The dipeptide yield was 35.5% under the optimized reaction conditions: 35°C, pH 9.5, and the ratio of acyl donor/nucleophile is 1:10. Based on the reaction mechanism and experimental data, the kinetic model was established, which was in accordance with the Michaelis-Menten equation, and the apparent Michaelis constant K(m)(app) and the apparent maximum reaction rate r(max)(app) were calculated as 1.71 mol/L and 6.09 mmol/(L Min), respectively.  相似文献   

13.
Penicillin acylase (PA) from Escherichia coli can catalyze the coupling of an acyl group to penicillin- and cephalosporin-derived beta-lactam nuclei, a conversion that can be used for the industrial synthesis of beta-lactam antibiotics. The modest synthetic properties of the wild-type enzyme make it desirable to engineer improved mutants. Analysis of the crystal structure of PA has shown that residues alphaR145 and alphaF146 undergo extensive repositioning upon binding of large ligands to the active site, suggesting that these residues may be good targets for mutagenesis aimed at improving the catalytic performance of PA. Therefore, site-saturation mutagenesis was performed on both positions and a complete set of all 38 variants was subjected to rapid HPLC screening for improved ampicillin synthesis. Not less than 33 mutants showed improved synthesis, indicating the importance of the mutated residues in PA-catalyzed acyl transfer kinetics. In several mutants at low substrate concentrations, the maximum level of ampicillin production was increased up to 1.5-fold, and the ratio of the synthetic rate over the hydrolytic rate was increased 5-15-fold. Moreover, due to increased tendency of the acyl-enzyme intermediate to react with beta-lactam nucleophile instead of water, mutants alphaR145G, alphaR145S and alphaR145L demonstrated an enhanced synthetic yield over wild-type PA at high substrate concentrations. This was accompanied by an increased conversion of 6-APA to ampicillin as well as a decreased undesirable hydrolysis of the acyl donor. Therefore, these mutants are interesting candidates for the enzymatic production of semi-synthetic beta-lactam antibiotics.  相似文献   

14.
A microassay based on fluorescence resonance energy transfer has been developed to determine the S' specificity of serine proteases. The protease-catalyzed acyl transfer from a fluorescing acyl donor ester to a P'1/P'2 variable hexapeptide library of nucleophiles labeled with a fluorescence quencher leads to an internally quenched peptide product and a fluorescent hydrolysis product. The amount of fluorescence quenching allows one to draw conclusions about the interaction of the nucleophile at the S' sites of the protease. o-Aminobenzoic acid and 3-nitrotyrosine were used as an efficient donor-acceptor pair for the resonance energy transfer. The P'1/P'2 variable hexapeptide library with the general structure H-Xaa-Ala-Ala-Ala-Tyr(NO2)-Gly-OH and H-Ala-Xaa-Ala-Ala-Tyr(NO2)-Gly-OH, where Xaa represents Arg, Lys, Met, Phe, Ala, Gly, Ser, Gln and Glu, was prepared by solid-phase synthesis. Investigations of the S' specificity of trypsin, chymotrypsin and trypsin variants show that this assay is a fast and sensitive screening method for S' subsite mapping of serine proteases and is suitable for a high throughput screening. The assay might be useful for the development of restriction proteases and the estimation of yields in enzymatic peptide synthesis.  相似文献   

15.
Benzyloxycarbonyl-L-alanine p-guanidinophenyl ester behaves as a trypsin "inverse substrate," i.e., a cationic center is included in the leaving group instead of being in the acyl moiety. Using this substrate as an acyl donor, trypsin catalyzes the synthesis of peptide bonds that cannot be split by this enzyme. An optimal acyl transfer efficiency was achieved between pH 8 and 9 at 30 degrees C.The addition of as much as 50% cosolvent was shown to be of minor influence on the acyl transfer efficiency, whereas the reaction velocity decreases by more than one order of magnitude. The efficiency of H-Leu-NH(2) and H-Val-NH(2) in deacylation is almost the same for "inverse" and normal type substrates.  相似文献   

16.
Production of cefazolin by acyl transfer enzymatic synthesis with immobilised cefazolin synthetase from Escherichia coli as a biocatalyst acting in accordance with the mechanism including formation of the acyl-enzyme complex was shown possible. The process kinetic parameters and the ratio of the maximum conversion of the key amino acid and the initial concentrations of the substrate and nucleophile were determined. Correlation of the calculated and experimental data on the cefazolin yield in the enzymatic synthesis was good. The main physico-chemical properties of the substrates and the reaction products i.e. dissociation constants and solubility were investigated. The complex of the physico-chemical studies makes it possible to design a highly efficient technological process for production of cefazolin including not only the stage of the enzymatic synthesis but also the stage of separation of the reaction mixture components.  相似文献   

17.
This account reports on the development and function of novel substrate mimetics as artificial substrates for Glu-specific endopeptidases. Firstly, in an empirical way, various aliphatic and aromatic analogs of the already established carboxymethyl thioester-substrate mimetics were designed from simple structure-function relationship studies. The specificity of the newly developed substrates for Staphylococcus aureus V8 protease-catalyzed reactions have been examined by steady-state hydrolysis kinetic studies. Additionally, these studies were expanded to the use of the equally Glu-specific endopeptidase from Bacillus licheniformis (BL-GSE) which can easily be purified from alcalase in high yields. Finally, the novel substrate mimetics were used as acyl donor components in BL-GSE- and V8 protease-catalyzed model acyl transfer reactions. The results clarify the newly developed substrate mimetics as efficient acyl donors as well as BL-GSE as an attractive alternative to V8 protease for enzymatic peptide synthesis.  相似文献   

18.
Serpins (serine protease inhibitors) inhibit target proteases by forming a stable covalent complex in which the cleaved reactive site loop of the serpin is inserted into beta-sheet A of the serpin with concomitant translocation of the protease to the opposite of the initial binding site. Despite recent determination of the crystal structures of a Michaelis protease-serpin complex as well as a stable covalent complex, details on the kinetic mechanism remain unsolved mainly due to difficulties in measuring kinetic parameters of acylation, protease translocation, and deacylation steps. To address the problem, we applied a mathematical model developed on the basis of a suicide inhibition mechanism to the stopped-flow kinetics of fluorescence resonance energy transfer during complex formation between alpha(1)-antitrypsin, a prototype serpin, and proteases. Compared with the hydrolysis of a peptide substrate, acylation of the protease by alpha(1)-antitrypsin is facilitated, whereas deacylation of the acyl intermediate is strongly suppressed during the protease translocation. The results from nucleophile susceptibility of the acyl intermediate suggest strongly that the active site of the protease is already perturbed during translocation.  相似文献   

19.
The function of acyl-4-guanidinophenyl esters as substrate mimetics for the serine protease alpha-chymotrypsin was investigated by protein-ligand docking, hydrolysis, and acyl transfer experiments. On the basis of protein-ligand docking studies, the binding and hydrolysis properties of these artificial substrates were estimated. The predictions of the rational approach were confirmed by steady-state hydrolysis studies on 4-guanidinophenyl esters derived from coded amino acids (which alpha-chymotrypsin is not specific for), noncoded amino acids, and even simple carboxylic acid moieties. Enzymatic peptide syntheses qualify these esters as suitable acyl donors for the coupling of acyl components far from the natural enzyme specificity, thus considerably expanding the synthetic utility of alpha-chymotrypsin.  相似文献   

20.
A depeptide synthesis was drastically influenced by the reaction temperature, in the range from -30 degrees to 25 degrees C. This article shows the kinetic reasons of this effect. alpha-Chymotrypsin was immobilized on celite and used in four different water-miscible solvents containing small amounts of water-miscible solvents containing small amounts of water. The reaction studied was the aminolysis of N-acetyl-L-phenylalanine ethyl ester (Ac-PheOEt) with L-alaninamide (Ala-NH(2)) and water for the acylenzyme complex, the nucleophile was favoured by low reaction temperatures. This effect (quantified as p-values) was observed in all four solvents, and it was greatest in acetonitrile and tetrahydrofuran. The esterase and amidase activities of the enzyme were studies using AcPheOEt and N-acetyl-L-phenylalanyl-L-ananinamide (AcPheAla-NH(2)) as substrates. The Michaelis-Menten parameters, K(m,app) and V(max), were determined for ester hydrolysis and dipeptide hydrolysis. Both K(m,app) and V(max) tended to increase with increasing temperature. Secondary hydrolysis was reduced at subzero temperatures because ester hydrolysis was favoured in relation to depeptide hydrolysis. Depeptide synthesis was thus favored by low temperatures in two ways: first, in the competition between the nucleophile and water for the acyl enzyme; and, second, in the competition between the ester substrate and the peptide substrate for the free enzyme. As a result, in acetonitrile containing 10% water, the maximal yield was 99% at -20%C compared with 84% at 25 degrees C. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号