首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Practical estrus synchronization schemes are needed for mares. The Ovsynch synchronization protocol for cattle involves the administration of gonadotropin-releasing hormone (GnRH) to induce ovulation or luteinization of dominant follicles during the luteal phase and prostaglandin 7 days later to cause regression of any luteal tissue and development of a preovulatory follicle. An Ovsynch-type synchronization program potentially could be developed for horses if luteinization or ovulation of diestrous follicles occurred in response to GnRH treatment. The objective of this study was to determine if administration of the GnRH agonist, deslorelin acetate, on Day 8 or 12 postovulation would induce luteinization or ovulation of diestrous follicles in the mare. The model used was cycling mares maintained in an artificial luteal phase by administration of a synthetic progestin following prostaglandin-induced luteal regression. On the day of ovulation, 21 light horse mares were randomly assigned to one of three groups: (1) no GnRH, altrenogest from Days 5 to 15 postovulation with prostaglandin on Day 15; (2) GnRH on Day 8, altrenogest from Days 5 to 15 with prostaglandin given on Day 6 to induce luteolysis of the primary corpus luteum, an implant containing 2.1mg of deslorelin acetate inserted on Day 8 and removed on Day 10, with a second prostaglandin treatment on Day 15; (3) GnRH on Day 12, altrenogest from Days 9 to 19, prostaglandin on Day 10, a deslorelin acetate implant injected on Day 12 (subsequently removed on Day 14), and a second dose of prostaglandin administered on Day 19. Follicular development was monitored every other day from Day 5 until a 30-mm sized follicle was observed, and then daily to detection of ovulation. Serum progesterone concentrations were determined daily for 12 consecutive days. Progesterone concentrations in Group 1 remained elevated until approximately Day 12 postovulation. Prostaglandin administration on Day 15 resulted in complete luteolysis in all seven mares. In Group 2, progesterone concentrations in six of seven mares declined to baseline after prostaglandin treatment. No increase in serum progesterone was noted in any of the six mares that were given GnRH on Day 8, including three mares that had diestrous follicles > or =30mm in diameter at the time of treatment. Similarly, progesterone concentrations in six of seven mares in Group 3 declined to baseline after prostaglandin and there was no increase in progesterone after administration of GnRH on Day 12. No ultrasound evidence of luteinization or ovulation of diestrous follicles were noted after GnRH administration in any mares of Group 2 or 3. In conclusion, administration of the GnRH agonist deslorelin acetate to mares failed to induce luteinization or ovulation of diestrous follicles. Consequently, the Ovsynch program (as used in cattle) has little efficacy for synchronization of estrus in mares.  相似文献   

2.
The Caspian breed of horses is believed to be the direct descendant of the earliest equine animals. Some special characteristics of Caspian horse differentiate this breed of horses from other breeds. In the current study the ultrasonically observed characteristics of a preovulatory dominant follicle and the lengths of estrus, diestrus as well as some related parameters were studied during 42 interovulatory intervals in 11 healthy Caspian mares. The preovulatory dominant follicle deviated from subordinate follicles and became the largest follicle in the ovaries at Day −8.7±0.53 (Day 0=ovulation). Every mare was a single ovulator with ovulations more frequent from the left ovary than from the right (65% versus 35%). Mean length of estrus, diestrus, and interovulatory interval were 8.3±0.86, 13.8±0.59, and 22.1±0.40 days, respectively. The time interval from ovulation until the time in which the mares were no longer in estrus was 1.9±0.42 days.  相似文献   

3.
A total of 15 blue fox vixens aged 1–6 years were mated, 12 once on the first day of estrus and three a second time 48 hr after the first mating, and were killed 4 hr to 8 days following mating. Ova were collected from the oviducts, evaluated by stereomicroscopy, and studied by transmission (TEM; N = 49, 12 vixens) or scanning (SEM, N = 11, three vixens) electron microscopy. At 0–3 days after ovulation, the ova had not cleaved and were at different stages of meiotic maturation. In about one-half of these ova, representing all stages of meiotic maturation, a decondensing sperm head without nuclear envelope or a small pronucleus with partial nuclear envelope was observed. No clear relationship was found between maternal meiotic stage and the stage of paternal pronucleus formation. Sperm tails were never identified in the ooplasm. Cortical granules were released after sperm penetration at early stages of meiotic maturation. Thus the block against polyspermic penetration was activated during maturation of the oocyte. The first two-cell stage appeared 4 days after ovulation (3 days after mating), the first four-cell stage the following day (day 5), and the first eight-cell stage 6 days after ovulation (5 days after mating). In a single vixen mated late (7 days postovulation) two- to four-cell stages appeared the following day (day 8). This indicates that the time required for the first cleavage division decreases with increasing interval from ovulation to mating. The development of a functional nucleolus with fibrillar centers and fibrillar and granular components at the eight-cell stage indicates activation of embryonic RNA synthesis in fox embryos at the six- to eight-cell stage, suggesting that the embryonic genome is activated at this stage. © 1993 Wiley-Liss, Inc.  相似文献   

4.
An experiment was carried out on pony mares to establish the time of the oestrous cycle at which ovarian follicles are recruited for ovulation. In one group (n=7), the cycle was interrupted at the preovulatory stage by removing the preovulatory follicle; in another group (n=13) the cycle was interrupted at day 6 of the luteal phase by inducing luteolysis with a prostaglandin injection (PG). In a subgroup (n=7) of those given PG, the ovary not bearing the corpus luteum was removed at the time of injection. A further group (n=6) served as surgical controls. The interval to the next ovulation and blood concentrations of FSH were observed. Anaesthesia alone induced in preovulatory mares was followed by normal ovulation 2.5+/-1 days later. Removal of the preovulatory follicle delayed the next ovulation (14.6+/-2.1 days; P < 0.01). Following PG injection, the interval to ovulation was similar regardless of whether an ovary was removed (12.8+/-4.3 days) or not (10+/-4.1 days). This similarity occurred despite a large and prolonged rise in plasma FSH levels that occurred only in the hemiovariectomized group. In addition, the intervals found after PG injection did not differ from those found after ablation of the preovulatory follicle. These observations indicate that 1) in the presence of the early active corpus luteum or dominant follicle, follicles grow to a similar stage of development; 2) recruitment of the follicle due to ovulation occurs 12 to 14 days before ovulation; 3) limiting new follicular growth to one ovary does not affect the time course to ovulation; and 4) prolonged high FSH levels do not alter the time course or ovulation rate.  相似文献   

5.
Mares treated with subcutaneous deslorelin implants on the first postpartum estrus early in the breeding season had significant reductions in the number of large follicles at early pregnancy examinations and delayed return to estrus (in mares that failed to become pregnant); these adverse effects were attributed to a prolonged release of the drug from the implant. In 2003, an injectable short-term release (<24 h) deslorelin product became available. The objective of this study was to determine if this product would hasten ovulation in early foaling first postpartum estrus mares without reducing the number of large follicles at early pregnancy examination (14-15 days postovulation). Beginning 5-6 days postpartum, first postpartum estrus (foal-heat) mares were teased daily and examined thrice weekly (Tuesday, Thursday and Saturday) by transrectal ultrasonography. Mares in estrus with a follicle > or = 34 mm diameter on Tuesdays or Thursdays were alternately assigned to: Treatment 1, n = 17; 1.5 mg injectable short-term release deslorelin, or Treatment 2, n = 16; Control (no treatment). The schedule allowed accurate determination of the number of mares ovulating within 2 days of treatment (i.e., ovulations detected on Thursday or Saturday). Mares were mated on the day of treatment and at 2-day intervals until either ovulation was confirmed or until behavioral estrus ceased. Transrectal ultrasonography was done 14-15 days after ovulation to assess ovarian follicles and pregnancy status. Fewer covers were required and more mares ovulated within 2 days of treatment in deslorelin-treated versus Control mares (P < 0.01). Pregnancy rates were normal (69%) in deslorelin-treated mares. The number of large follicles 14-15 days after ovulation did not differ between deslorelin-treated and Control mares (P > 0.10), suggesting follicular suppression did not occur with this formulation of deslorelin.  相似文献   

6.
Sexual behavior, follicular development and ovulation, and concentrations of circulating gonadotropins during the estrous cycle were studied during the summer in 7 jennies. Mean behavioral estrous length was 6.4 +/- 0.6 days (mean +/- SEM, n=19; 5.6 +/- 0.5 days preovulatory and 0.8 +/- 0.2 days post-ovulatory). Mean diestrous length was 19.3 +/- 0.6 days (n=14). Females in estrus typically showed posturing, mouth clapping, clitoral winking, urinating and tail raising. Mouth clapping began approximately one day sooner and lasted approximately one day longer than winking and tail raising, so that the total duration of clapping was significantly greater than for the other two signs. Follicular changes and concentrations of gonadotropins were determined for 14 estrous cycles (2 per jenny). The follicular end points [diameter of the largest follicle and number of large (>25 mm), medium (20-24 mm), and small follicles (<20 mm)] showed a significant day effect. The diameter of the largest follicle and the number of large follicles began to increase significantly 7 days prior to ovulation with a maximum value the day before ovulation. Medium follicles reached a maximum number 4 days prior to ovulation, and small follicles decreased significantly prior to ovulation. After ovulation, all follicular end points, except the number of small follicles, remained low for the next 12 days. Mean values of FSH were low during estrus and high during diestrus with 2 significant peaks, one 3 days and one 9 days after ovulation. In contrast, mean levels of LH were low during diestrus and high during estrus with a maximum value the day after ovulation. The LH profile showed a more prolonged gradual increase prior to ovulation, than that which has been reported for ponies and horses.  相似文献   

7.
The current study characterized the timing of emergence of ovulatory follicles during the follicular phase of the estrous cycle in polyovulatory does and assessed whether selection may influence ovulation rate through differences in ovarian follicular dynamics, by characterizing preovulatory follicular emergence and growth in two ecotypes of Neuquen-Criollo Argentinean goats (Short-Hair, n=11 and Long-Hair, n=9). During the breeding season, the time of estrus was synchronized in all does with two doses of a prostaglandin analogue. Ovarian laparoscopies were performed on days 17 and 19 after the induced estrus (day 0) and 7-15 h after the beginning of the subsequent estrus. Results indicate that both ecotypes of goats have common features in the ovarian follicular population and in the patterns of preovulatory follicular enlargement. In all the goats, most of the preovulatory follicles arose from the pool of follicles present in the ovary between days 17 and 19 of the estrous cycle. These follicles were all larger than 2mm at emergence, being the largest growing follicle present in the ovaries on days 17 and 19 in 56.5 and 78.6% of the does, respectively. The appearance of new follicles remained unaffected, while the mean number of small growing follicles decreased (P<0.05) during the follicular phase, indicating that preovulatory follicles do not suppress the emergence of new follicles but inhibit the growth of small follicles. A separate analysis of single and double ovulating does showed that 75% of the second ovulatory follicles in polyovulatory goats was present on the ovarian surface between days 17 and 19 of the estrous cycle, but appeared later in the other 25% of the estrous cycles. These findings support the hypothesis that follicular dominance effects are exerted during the preovulatory period, when the growth of follicles other than the ovulatory is inhibited, and that increases in ovulation rate in small ruminants are related to a reduced incidence of follicular atresia and an extended period of ovulatory follicle recruitment.  相似文献   

8.
The potential involvement of ovarian factors in regulating GnRH and LH postovulation was studied in ovarian intact (Group 1; n=3) and ovariectomized (OVX; Group 2; n=3) mares (OVX within 12 hr of ovulation). Blood samples were collected every 10 min for 6 hr from jugular vein (JV) and intercavernous sinus (ICS) during estrus and on Day 8 postovulation for LH and GnRH analysis. Additionally, JV samples were collected twice daily (12-hr intervals) for 30 days for LH and progesterone (P4) analysis. A significant treatment x day effect (P<0.0001) describes declining plasma LH concentrations in intact mares, and regression analysis indicated that response curves were not parallel (P<0.001). Plasma LH concentrations remained elevated in OVX mares. LH increased further in OVX mares by Day 8 post-OVX (P<0.06), reflecting the increased (P<0.07) LH episode amplitude. GnRH decreased from estrus to Day 8 in both groups reflecting an effect of sampling period (P<0.03). GnRH episode amplitude declined (P<0.08) from estrus (62.8+/-3.1 pg/mL) to Day 8 (46.3+/-3.1 pg/mL) in OVX mares, but not in control mares (intact estrus, 36.5+/-6.4; intact Day 8, 37.5+/-7.3; OVX estrus, 62.8+/-3.1; OVX Day 8, 46.3+/-3.1 pg/mL). In conclusion, we propose that postovulatory LH decline requires ovarian feedback in mares, and that OVX alters GnRH secretory dynamics such that LH concentrations does not decline postovulation and, in fact, is further elevated with time after OVX.  相似文献   

9.
The objective of this experiment was to identify the optimal time of insemination relative to the time of ovulation, based on ultrasonographic detection of embryonic survival at 10 days after ovulation, number of sows farrowing, and litter size. Furthermore, the possible value of the interval from weaning to onset of estrus for prediction of the time of ovulation was examined. Crossbred sows (n = 143) that had farrowed 2 to 9 litters were weaned (Day 0) and observed for estrus every 8 h from Day 3 until end of estrus. Ultrasonography was performed every 6 h, from 12 h after onset of estrus until ovulation had been observed. The sows were inseminated once at various time intervals from ovulation. At Day 16, 25 of the sows were slaughtered and their uteri were flushed for embryos. In the remaining sows, the number of viable and dead piglets and mummified fetuses per sow was recorded at farrowing, with the sum of the 3 constituting the total number of piglets born per sow. The highest number of embryos recovered per sow was found after insemination during the interval from 24 h before to 4 h after ovulation. The lowest frequency of non-pregnant sows and the highest total number of piglets born per sow were found after insemination from 28 h before to 4 h after ovulation. Consequently, the optimal time for insemination was found to be in the interval 28 h before to 4 h after ovulation. The interval from weaning to onset of estrus and from onset of estrus to ovulation were negatively correlated, allowing a rough prediction of the time of ovulation from the interval from weaning to onset of estrus.  相似文献   

10.
Information on the use of buffalo follicular fluid (buFF) in modulation of ovarian functions in farm animals is scanty compared to other species. This is an attempt to investigate the effect of direct administration and active immunization of 30 kDa and above buFF proteins on ovarian functions in goats. Treatment of goats (n = 6) with steroid free 30 kDa and above buFF protein fraction during late-luteal phase for 4 days (days 12 or 13 to days 15 or 16) of the natural cycle, delayed the onset of estrus by 24 h compared to control although the mean duration of estrus was unaffected. A 71% increase (P = 0.06) in mean ovulation number was also observed following treatment. However, the population of large (> or =5 mm diameter) follicle was not affected. The ovarian activity calculated as total of ovulation and large follicles increased (1.6 times) significantly (P = 0.02) in treated animals. Active immunization of goats (n = 5) against these proteins did not affect the onset and duration of estrus. Similarly, the ovulation rate, number of large follicles and the ovarian activity did not differ significantly between immunized and control groups. The study revealed that 30 kDa and above buffalo follicular fluid contains some factor(s) that cause delay in the onset of estrus in goats and increase the ovulation rate. Active immunization against these proteins in goat did not show any effect either on onset, duration of estrus or ovulation rate and large follicle population. Detailed study on these buffalo follicular fluid proteins may help to use them further for modulation of ovarian function in farm animals.  相似文献   

11.
The duration of ovulation in pigs was studied by transrectal ultrasonography. The number of preovulatory follicles was counted on both ovaries at 30-minute intervals from 36 hours after the onset of estrus (Group A: naturally ovulating sows that were group-housed and were inseminated and caged during scanning) or 40 hours after treatment with human chorionic gonadotropin (hCG) (Group B: tethered sows that had been induced to ovulate but were not inseminated). The duration of ovulation was (mean+/-SD) 1.8+/-0.6 hours (range 0.75 to 3.25) in Group A (n=13) and 4.6+/-1.7 hours (range 2.0 to 7.0) in Group B (n=8). The difference was significant (P<0.01). In Group A and B sows, respectively, the course of ovulation, expressed as the relation between the relative follicle count (percentage of the maximum follicle count; Y) and the time (percentage of the duration of ovulation; X) was: Y = 104.3( *)e(-0.023( *)X) (R(2)=0.95) and Y = 98.9( *)e(-0.018( *)X) (R(2)=0.92). The onset of ovulation occurred at approximately two-thirds of the duration of the estrus (Group A: 67+/-6%; Group B: 60+/-10%). Group A sows were artificially inseminated and were slaughtered at 98+/-8 hours (range 77 to 110) after ovulation. The difference between the maximum follicle count and the corpora lutea count was zero or only 1 in 81% (21 26 ) of the ovaries. Embryonic diversity (within-litter SD of the number of nuclei or of the number of cell cycles) was not related to the duration of ovulation, neither at the level of ovary nor of sow (P>0.05). In conclusion, transrectal ultrasonography was found to be an appropriate nonsurgical method of studying the duration of ovulation in pigs. The duration of ovulation varied both between sows and between groups of sows, and was not related to early embryonic diversity.  相似文献   

12.
The Catalonian donkey breed is in danger of extinction, and much needs to be learned about the reproductive features of its females if breeding and conservation programmes are to be successful. This study reports the oestrous behaviour, oestrus cycle characteristics and dynamic ovarian events witnessed during 50 oestrous cycles (involving 106 ovulations) in 10 Catalonian jennies between March 2002 and January 2005. These jennies were teased, palpated transrectally and examined by ultrasound using a 5 MHz linear transducer-daily during oestrus and every other day during dioestrus. Predictors of ovulation were sought among the variables recorded. The most evident signs of oestrus were mouth clapping (the frequent vertical opening and closing of the mouth with ears depressed against the extended neck) and occasional urinating and winking of the vulval lips (homotypical behaviour). Interactions between jennies in oestrus were also recorded, including mounting, herding/chasing, the Flehmen response, and vocalization (heterotypical behaviour). Nine jennies ovulated regularly throughout the year; one had two anovulatory periods (54 and 35 days). The length of the oestrus cycle was 24.90 +/- 0.26 days, with oestrus itself lasting 5.64 +/- 0.20 days (mean +/- S.E.M.) and dioestrus 19.83 +/- 0.36 days. The incidence of single, double and triple ovulations was 55.66% (n=59), 42.45% (n=45) and 1.89% (n=2), respectively. No significant difference was seen in the number of ovulations involving the left and right ovaries (52.63% [n=70] compared to 47.37% [n=63] respectively; P>0.05). The mean interval between double ovulation was 1.44 +/- 3.98 days. The mean diameter of the preovulatory follicle at day -1 was 44.9 +/- 0.5 mm; the mean growth rate over the 5 days before ovulation was 3.7 mm/day. Data on preovulatory changes in oestrous behaviour, follicle size, follicle texture, the echographic appearance of the follicle and uterus, and uterine tone were subjected to stepwise logistic regression analysis to detect predictors of ovulation. The logit function showed the best predictors to be follicle size, follicular texture and oestrous behaviour. Certain combinations of these three variables allow the prediction of ovulation within 24 h with a probability of >75%.  相似文献   

13.
Ultrasonic evaluation of the preovulatory follicle in the mare   总被引:4,自引:0,他引:4  
Ultrasonically visible characteristics of preovulatory follicles in mares which single ovulated were studied daily for 79 preovulatory periods in 40 mares. The preovulatory follicle became the largest follicle in the ovary from which ovulation later occurred six or more days before ovulation in 65 of 79 (82%) preovulatory periods; the mean was day -7 (range, day -14 to day -4). The increase in mean diameter of the preovulatory follicle was linear (R(2)=99.5%) over day -7 (29.4 +/- 0.8 mm) to day -1 (45.2 +/- 0.5 mm; growth rate, 2.7 mm/day). Follicles which double-ovulated were smaller (P<0.05) on day -1 (36 +/- 1.6 mm; n=12 follicles). Preovulatory follicles exhibited a pronounced change in shape from a spherical to a conical or pear-shaped structure in 84% of the preovulatory periods. Remaining follicles retained a spherical shape. Scores representing thickness of the follicular wall increased (P<0.05) as the interval to ovulation decreased. There was no significant difference among days in mean gray-scale value of the follicular wall or in echogenicity of the follicular fluid. Although diameter and shape of the follicle and thickness of the follicular wall changed during the preovulatory period, no reliable ultrasonically visible predictor of impending ovulation was found.  相似文献   

14.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

15.
The present experiment was conducted to study the growth profile of the ovulatory follicle in relation to the expression of estrus following administration of PGF(2alpha) to subestrus buffaloes. After detection of a mature corpus luteum by examination per rectum, confirmed by ultrasound scanning, subestrus buffaloes (n=20) were treated (Day 0) with single dose of Dinoprost tromethamin (25 mg, i.m.). Blood samples were collected at 0, 24 and 48 h after treatment for estimation of plasma progesterone concentration. Growth profile of the ovulatory follicle was monitored daily through ultrasound scanning starting from Day 0 until ovulation and the regression profile of CL was monitored at 0, 24 and 48 h of treatment. Estrus was detected by exposure to a fertile buffalo bull three times a day until expression of overt estrus or ovulation. Behavioral estrus was recorded in 14 animals and 6 animals ovulated silently. Sixteen animals including six animals with silent estrus ovulated from the dominant follicle present at treatment (Group A) and remaining four animals ovulated from the dominant follicle of succeeding follicular wave (Group B). The intervals from treatment to estrus (6.5+/-0.25 versus 3.2+/-0.27 days, P<0.001) and treatment to ovulation (7.5+/-0.25 versus 5.4+/-0.46 days, P<0.005) were significantly longer in animals of Group B compared with animals of Group A. Significant differences were observed in growth profile of the ovulatory follicle between animals of Groups A and B with respect to size of the follicle on Day 0 (9.8+/-0.7 versus 5.3+/-0.45 mm, P<0.001), daily growth rate (0.97+/-0.07 versus 1.6+/-0.2 mm/day, P<0.01) and increase in diameter (4.1+/-0.6 versus 7.8+/-0.7 mm, P<0.01). The animals with silent estrus (subgroup A-2) had significantly smaller diameter of the ovulatory follicle on Day 0 (7.7+/-0.4 versus 11.0+/-0.7 mm, P<0.005), its daily growth rate was significantly slower (0.7+/-0.02 versus 1.1+/-0.1 mm/day, P<0.01) and they recorded significantly longer interval from treatment to ovulation (7.3+/-0.56 versus 4.2+/-0.27 days, P<0.001) compared with the animals that showed overt estrus (subgroup A-1). The corpus luteum area (CL area) and plasma progesterone (P(4)) concentration declined continuously from 0 to 48 h after PGF(2alpha) treatment in the animals of both the Groups A and B. Non-significant differences were observed in mean CL area and plasma P(4) concentration at 0, 24 and 48 h post-treatment between animals of Groups A and B and also between animals of subgroups A-1 and A-2. The small size and the slow growth rate of the ovulatory follicle were identified as the possible cause of silent estrus in subestrus buffaloes after PGF(2alpha) treatment.  相似文献   

16.
This study was conducted to identify factors affecting PGF(2alpha) efficacy to synchronize estrus in water buffalo cows. After detection of a corpus luteum (CL) by rectal palpation, cows were treated (im) with dinoprost (12.5, 25 or 50mg) or D(+) cloprostenol (75, 150 or 300 microg) in a total of 66 treatments. Blood samples were collected 0, 24 and 48 h after treatment and ultrasound examinations and observations for estrus were performed daily to the day of ovulation or to 6 days after treatment. No PGF(2alpha) dose-response pattern was observed and overall rates of luteal regression (progesterone <1.0 ng/ml at 48 h), estrus, no detected behavioral estrus with ovulation occurring, and ovulation were 71.2, 36.4, 19.7 and 54.5%, respectively. To analyze plasma progesterone concentrations and ovarian dynamics, cows were divided in three groups according to their response to treatment. Cows that failed to have ovulations from a follicle after treatment (Group A, n = 30) had (P < 0.05) a lower plasma progesterone concentration (2.98 ng/ml) and smaller CL area (CLA; 187.3 mm(2)) before treatment as compared with cows that had an ovulation from a follicle (4.43 ng/ml and 223.7 mm(2), respectively; Groups B and C, n = 36). In cows that failed to ovulate, plasma progesterone concentration decreased in the first 24 h, but did not decline further and was >1.0 ng/ml 48 h after treatment. Moreover, no significant change in CLA after treatment was detected, indicating that treatment induced only partial luteolysis. In cows that ovulated, plasma progesterone concentration and CLA decreased continuously from treatment to ovulation (consistent with complete luteolysis). Threshold values of 2.8 ng/ml for plasma progesterone concentration and 189 mm(2) for CLA were identified as the best predictors of ovulation before treatment (83.3 and 80.6% sensitivity and 58.6 and 65.5% specificity, respectively, with positive and negative predictive values around 71%). When the origin of the ovulatory follicle was investigated, the interval from treatment to ovulation was shorter (91.9 versus 113.3 h; P < 0.05), and the ovulatory follicle had a slower growth rate (1.02 versus 1.55 mm per day; P < 0.005), a lesser increase in diameter from treatment to ovulation (4.7 versus 8.0 mm; P < 0.001), and a greater maximum diameter (13.2 versus 12.1 mm; P < 0.05) in cows that ovulated from the largest follicle present in the ovary before treatment (Group B, n = 27) compared with cows that ovulated from the second largest follicle present in the ovary before treatment (Group C, n = 9). In summary, the efficacy of PGF(2alpha) for causing luteolysis and synchronizing estrus and ovulation in buffalo cows was dependent upon plasma progesterone concentration, CL size and ovarian follicular status before treatment.  相似文献   

17.
Quarterhorse mares were used to investigate effects of estradiol-17beta on uterine involution, duration of estrus, interval to ovulation, and fertility achieved by breeding on the first postpartum estrus. On the day of foaling, mares were injected with biodegradable poly (DL-lactide) microspheres containing either 100 mg estradiol-17beta (25 mares) or no drug (27 mares). The treatment period was considered to last for 12 to 15 d. Estrus was determined by teasing mares (n=16) with a stallion. Ovulation was detected by transrectal ultrasonographic examination of ovaries (n=48). On Days 6, 11 and 16 post partum, transrectal ultrasonography was used to measure cross-sectional diameters of the uterine body, uterine horns, and fluid within the uterine lumen (n=28). Uteri were swabbed for bacteriologic culture, and uterine biopsies were obtained from the previously gravid uterine horn on Days 11 and 16 post partum, for assessment of endometritis and morphometric analysis of endometrial histioarchitecture (n=19). Twenty-two mares were bred on foal-heat, and pregnancy was determined by transrectal ultrasonography on 14 to 16 and 30 to 35 d after breeding. With only one exception (diameter of previously gravid uterine horn on Day 11), mean values for all measures of uterine involution did not differ between treatment groups (P > 0.05). No differences were detected between treatment group means for length of estrus or interval to ovulation (P > 0.05). No differences were detected between treatment group liklihoods for recovery of potential bacterial pathogens, presence of endometritis, or presence of intrauterine fluid at 11 or 16 d post partum (P > 0.05). Pregnancy rate of mares treated with estradiol (5 11 ; 45%) was not different from that of control mares (9 11 ; 82%; P > 0.05). Estradiol treatment did not hasten uterine involution, increase duration of estrus, delay ovulation, or increase fertility in these postpartum mares.  相似文献   

18.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

19.
Intrafollicular insemination (IFI) is based on direct introduction of a sperm suspension into a preovulatory follicle. To our knowledge, the first cases of IFI resulting in pregnancy of the cow are reported here. The experiment was performed on a dairy herd with low fertility during the warm season of the year. Following the sequence of estrus detection, one in three inseminations was intrafollicular (n = 17), whereas deposition of semen was performed into the uterine body (IUI) in the remaining cows (n = 33). Approximately 0.06 ml of a seminal dose containing five million spermatozoa (one quarter of a commercial seminal dose in a 0.25 ml French straw) was injected trans-vaginally into the preovulatory follicle in the IFI group. Four (23.5%) and 3 (9%) cows of the IFI and IUI groups, respectively, became pregnant. On days 8-11 post-insemination, ovulation failure was registered in 3 (18%) and in 4 (12%) cows of the IFI and IUI groups, respectively. Our results suggest that IFI could be used as an alternative procedure to the usual deposition of semen into the uterus in cows of low fertility.  相似文献   

20.
Supplementation with l-arginine can increase uterine arterial blood flow and vascular perfusion of the preovulatory follicle in mares. Increased vascular perfusion of the preovulatory follicle has been correlated with successful pregnancy in mares. The objective of this study was to determine if supplemental l-arginine would increase ovarian arterial blood flow, vascular perfusion of the preovulatory follicle, and embryo recovery rates in mares. Mares were blocked by age and breed and assigned at random within block to l-arginine supplementation or control groups. Mares were fed l-arginine beginning 17 days before and through the duration of the study. Transrectal Doppler ultrasonography was used to measure ovarian arterial blood flow and vascular perfusion of the preovulatory follicle daily when it reached 35 mm and subsequent CL on Days 2, 4, and 6. Mares, on achieving a follicle of 35 mm or more were bred via artificial insemination and an embryo collection was attempted 7 days after ovulation. Treatment did not affect interovulatory interval (arginine-treated, 18.1 ± 2.6 days; control, 20.7 ± 2.3 days) or embryo recovery rate (arginine-treated, 54%; control, 48%). Mares treated with l-arginine had a larger follicle for the 10 days preceding ovulation than control mares (30.4 ± 1.2 and 26.3 ± 1.3 mm, respectively; P < 0.05) and vascular perfusion of the dominant follicle tended (P = 0.10) to be greater for the 4 days before ovulation. No differences were observed between groups in diameter or vascular perfusion of the CL. Resistance indices, normalized to ovulation, were not significantly different between groups during the follicular or luteal phase. Oral l-arginine supplementation increased the size and tended to increase perfusion of the follicle 1, but had no effect on luteal perfusion or embryo recovery rates in mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号