首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinase PKR is a central component of the interferon antiviral pathway. PKR is activated upon binding double-stranded (ds) RNA to undergo autophosphorylation. Although PKR is known to dimerize, the relationship between dimerization and activation remains unclear. Here, we directly characterize dimerization of PKR in free solution using analytical ultracentrifugation and correlate self-association with autophosphorylation activity. Latent, unphosphorylated PKR exists predominantly as a monomer at protein concentrations below 2 mg/ml. A monomer sedimentation coefficient of s(20,w)(0)=3.58 S and a frictional ratio of f/f(0)=1.62 indicate an asymmetric shape. Sedimentation equilibrium measurements indicate that PKR undergoes a weak, reversible monomer-dimer equilibrium with K(d)=450 microM. This dimerization reaction serves to initiate a previously unrecognized dsRNA-independent autophosphorylation reaction. The resulting activated enzyme is phosphorylated on the two critical threonine residues present in the activation loop and is competent to phosphorylate the physiological substrate, eIF2alpha. Dimer stability is enhanced by approximately 500-fold upon autophosphorylation. We propose a chain reaction model for PKR dsRNA-independent activation where dimerization of latent enzyme followed by intermolecular phosphorylation serves as the initiation step. Subsequent propagation steps likely involve phosphorylation of latent PKR monomers by activated enzyme within high-affinity heterodimers. Our results support a model whereby dsRNA functions by bringing PKR monomers into close proximity in a manner that is analogous to the dimerization of free PKR.  相似文献   

2.
Several Fusarium strains produce the cyclohexadepsipeptide enniatin, a host-nonspecific phytotoxin. Enniatins are synthesized by the 347-kDa multifunctional enzyme enniatin synthetase. In the present study, 36 Fusarium strains derived from a wide range of host plants were characterized with respect to enniatin production in different media. Thirteen of these strains produced enniatins on one or more of these media. To determine whether enniatin production affected virulence, an assay on potato tuber tissue was performed. Seven enniatin-producing and 16 nonproducing strains induced necrosis of potato tuber tissue, so that enniatin synthesis is not essential for the infection of potato tuber tissue. The application of a mixture of enniatins to slices of potato tuber, however, caused necrosis of the tissue. Therefore, enniatin production by the enniatin-synthesizing strains may affect their pathogenicity. The enniatin synthetase gene (esyn1) of Fusarium scirpi ETH 1536 was used as a probe to determine if similar sequences were present in the strains examined. In Southern blot analyses, DNA sequences hybridizing with the esyn1 probe were present in all but two of the strains examined. In some cases, enniatin-nonproducing strains had the same hybridization pattern as enniatin producers.  相似文献   

3.
Biosynthesis of PF1022A and related cyclooctadepsipeptides   总被引:3,自引:0,他引:3  
PF1022A belongs to a recently identified class of N-methylated cyclooctadepsipeptides (CODPs) with strong anthelmintic properties. Described here is the cell-free synthesis of this CODP and related structures, as well as the purification and enzymatic characterization of the responsible synthetase. For PF1022A synthesis extracts of Mycelia sterilia were incubated with the precursors L-leucine, D-lactate, D-phenyllactate, and S-adenosyl-L-methionine in the presence of ATP and MgCl(2). A 350-kDa depsipeptide synthetase, PFSYN, responsible for PF1022A synthesis was purified to electrophoretic homogeneity. Like other peptide synthetases, PFSYN follows a thiotemplate mechanism in which the substrates are activated as thioesters via adenylation. N-Methylation of the substrate L-leucine takes place after covalent binding prior to peptide bond formation. The enzyme is capable of synthesizing all known natural cyclooctadepsipeptides of the PF1022 type (A, B, C, and D) differing in the content of D-lactate and D-phenyllactate. In addition to PF1022 types A, B, C, and D, the in vitro incubations produced PF1022F (a CODP consisting of D-lactate and N-methyl-L-leucine), as well as di-, tetra-, and hexa-PF1022 homologs. PFSYN strongly resembles the well documented enniatin synthetase in size and mechanism. Our results suggest that PFSYN, like enniatin synthetase, is an enzyme with two peptide synthetase domains and forms CODP by repeated condensation of dipeptidol building blocks. Due to the low specificity of the d-hydroxy acid binding site, D-lactate or D-phenyllactate can be incorporated into the dipeptidols depending on the concentration of these substrates in the reaction mixture.  相似文献   

4.
A gene (ssg) encoding a putative glucoamylase in a hyperthermophilic archaeon, Sulfolobus solfataricus, was cloned and expressed in Escherichia coli, and the properties of the recombinant protein were examined in relation to the glucose production process. The recombinant glucoamylase was extremely thermostable, with an optimal temperature at 90 degrees C. The enzyme was most active in the pH range from 5.5 to 6.0. The enzyme liberated beta-d-glucose from the substrate maltotriose, and the substrate preference for maltotriose distinguished this enzyme from fungal glucoamylases. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation analysis revealed that the enzyme exists as a tetramer. The reverse reaction of the glucoamylase from S. solfataricus produced significantly less isomaltose than did that of industrial fungal glucoamylase. The glucoamylase from S. solfataricus has excellent potential for improving industrial starch processing by eliminating the need to adjust both pH and temperature.  相似文献   

5.
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine biosynthetic pathway. The tetrameric structure of DHDPS is thought to be essential for enzymatic activity, as isolated dimeric mutants of Escherichia coli DHDPS possess less than 2.5% that of the activity of the wild-type tetramer. It has recently been proposed that the dimeric form lacks activity due to increased dynamics. Tetramerization, by buttressing two dimers together, reduces dynamics in the dimeric unit and explains why all active bacterial DHDPS enzymes to date have been shown to be homo-tetrameric. However, in this study we demonstrate for the first time that DHDPS from methicillin-resistant Staphylococcus aureus (MRSA) exists in a monomer-dimer equilibrium in solution. Fluorescence-detected analytical ultracentrifugation was employed to show that the dimerization dissociation constant of MRSA-DHDPS is 33 nm in the absence of substrates and 29 nm in the presence of (S)-aspartate semialdehyde (ASA), but is 20-fold tighter in the presence of the substrate pyruvate (1.6 nm). The MRSA-DHDPS dimer exhibits a ping-pong kinetic mechanism (k(cat)=70+/-2 s(-1), K(m)(Pyruvate)=0.11+/-0.01 mm, and K(m)(ASA)=0.22+/-0.02 mm) and shows ASA substrate inhibition with a K(si)(ASA) of 2.7+/-0.9 mm. We also demonstrate that unlike the E. coli tetramer, the MRSA-DHDPS dimer is insensitive to lysine inhibition. The near atomic resolution (1.45 A) crystal structure confirms the dimeric quaternary structure and reveals that the dimerization interface of the MRSA enzyme is more extensive in buried surface area and noncovalent contacts than the equivalent interface in tetrameric DHDPS enzymes from other bacterial species. These data provide a detailed mechanistic insight into DHDPS catalysis and the evolution of quaternary structure of this important bacterial enzyme.  相似文献   

6.
Covalently bound intermediates of enniatin B synthesis could be isolated from enniatin synthetase by treatment with performic acid. By comparison with products of mild alkaline cleavage of authentic enniatin B they could be identified as the dipeptide D-2-hydroxyisovaleryl-N-methylvaline and the corresponding tetrapeptide. Synthesis of enniatins apparently proceeds via condensation of dipeptides. This was confirmed by the use of the substrate analogue isovaleric acid, which has shown to be a strong inhibitor for enniatin synthesis by formation of N-isovaleryl-N-methyl valine.  相似文献   

7.
A crucial step in the biosynthesis of the spermine alkaloid aphelandrine and its diastereoisomer orantine is an intramolecular cyclization of the intermediate (S)-dihydroxyverbacine. In order to elucidate this step of the biosynthetic pathway, microsomes from the roots of Aphelandra squarrosa Nees were incubated with unlabeled and (D8)-labeled (S)-dihydroxyverbacine. It was shown that the microsomal fraction catalyzes the intramolecular coupling of (S)-dihydroxyverbacine to aphelandrine. This was proven by microsomal transformation of (D8)-labeled (S)-dihydroxyverbacine to (D8)-labeled aphelandrine. The reaction absolutely requires NAPDH and O2. The underlying reaction mechanism is probably an oxidative phenol coupling catalyzed by an aphelandrine synthase. This enzyme is proposed to be a cytochrome P-450 oxidase. The intramolecular cyclization of (S)-dihydroxyverbacine represents an important point in the biogenesis of the aphelandrine-type alkaloids.  相似文献   

8.
Based on experimental evidence and DFT studies, a probable cyclization route to 1,3,5-thiadiazinanes-2-thiones in aqueous medium is proposed. Experimental facts suggest the formation of a {[hydroxymethyl (substituted) carbamothioyl] sulfanyl}methanol intermediate via reaction of dithiocarbamate (DTC) and formaldehyde. Nucleophilic addition of glycine to this intermediate generates an adduct that undergoes intramolecular heterocyclization via an SN2 reaction. Computational calculations predict an active role of water in the reaction mechanism that promotes intramolecular cyclization. Figure Energy profile of the proposed reaction mechanism for the synthesis of thiadiazinane-2-thione ring 11 in aqueous medium from a (hydroxymethylcarbamothioyl)sulfanylmethanol intermediate, 9  相似文献   

9.
Okuda K  Seila AC  Strobel SA 《Biochemistry》2005,44(17):6675-6684
The ribosome-catalyzed peptidyl transferase reaction displays a complex pH profile resulting from two functional groups whose deprotonation is important for the reaction, one within the A-site substrate and a second unidentified group thought to reside in the rRNA peptidyl transferase center. Here we report the synthesis and activity of the beta,beta-difluorophenylalanyl derivative of puromycin, an A-site substrate. The fluorine atoms reduce the pK(a) of the nucleophilic alpha-amino group (<5.0) such that it is deprotonated at all pHs amenable to ribosomal analysis (pH 5.2-9.5). In the 50S modified fragment assay, this substrate reacts substantially faster than puromycin at neutral or acidic pH. The reaction follows a simplified pH profile that is dependent only upon deprotonation of a titratable group within the ribosomal active site. This feature will simplify characterization of the peptidyl transferase reaction mechanism. On the basis of the reaction efficiency of the doubly fluorinated substrate compared to the unfluorinated derivative, the Bronsted coefficient for the nucleophile is estimated to be substantially smaller than that reported for uncatalyzed aminolysis reactions, which has important mechanistic implications for the peptidyl transferase reaction.  相似文献   

10.
EmrE is a small multidrug transporter that contains 110 amino acid residues that form four transmembrane alpha-helices. The three-dimensional structure of EmrE has been determined from two-dimensional crystals by electron cryo-microscopy. EmrE is an asymmetric homo-dimer with one substrate molecule bound in a chamber accessible laterally from one leaflet of the lipid bilayer. Evidence from substrate binding analyses and analytical ultracentrifugation of detergent-solubilised EmrE shows that the minimum functional unit for substrate binding is a dimer. However, it is possible that EmrE exists as a tetramer in vivo and plausible models are suggested based upon analyses of two-dimensional crystals.  相似文献   

11.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic halohydrins. To understand the kinetic mechanism and enantioselectivity of the enzyme, steady-state and pre-steady-state kinetic analysis was performed with p-nitro-2-bromo-1-phenylethanol (PNSHH) as a model substrate. Steady-state kinetic analyses indicated that the k(cat) of the enzyme with the (R)-enantiomer (22 s(-1)) is 3-fold higher than with the (S)-enantiomer and that the K(m) for the (R)-enantiomer (0.009 mM) is about 45-fold lower than that for the (S)-enantiomer, resulting in a high enantiopreference for the (R)-enantiomer. Product inhibition studies revealed that HheC follows an ordered Uni Bi mechanism for both enantiomers, with halide as the first product to be released. To identify the rate-limiting step in the catalytic cycle, pre-steady-state experiments were performed using stopped-flow and rapid-quench methods. The results revealed the existence of a pre-steady-state burst phase during conversion of (R)-PNSHH, whereas no such burst was observed with the (S)-enantiomer. This indicates that a product release step is rate-limiting for the (R)-enantiomer but not for the (S)-enantiomer. This was further examined by doing single-turnover experiments, which revealed that during conversion of the (R)-enantiomer the rate of bromide release is 21 s(-1). Furthermore, multiple turnover analyses showed that the binding of (R)-PNSHH is a rapid equilibrium step and that the rate of formation of product ternary complex is 380 s(-1). Taken together, these findings enabled the formulation of an ordered Uni Bi kinetic mechanism for the conversion of (R)-PNSHH by HheC in which all of the rate constants are obtained. The high enantiopreference for the (R)-enantiomer can be explained by weak substrate binding of the (S)-enantiomer and a lower rate of reaction at the active site.  相似文献   

12.
Solution of thrombosthenin, the contractile protein complex isolated from pig platelets, have been studied by analytical ultracentrifugation and zone sedimentation in sucrose density gradients. Freshly prepared thrombosthenin in 0.6 M KCl shows a prominent peak in the ultracentrifuge with S degrees 20w about 5.5 and higher molecular weight aggregates (greater than 100S) sedimenting quickly to the bottom of the cell. Short term storage of high ionic strength solutions of thrombosthenin induces actomyosin-like gel formation and these gels dissociate with ATP and Mg2+ ions into two components of S degrees 20w 8.0 and S degrees 20w50. The supernatant, after actomyosin gel removal, contains only the S degrees 20w5.5 protein. From results of Ca2+ ATPase activity measurements and SDS polyacrylamide gel electrophoretic mobilities of dissociated thrombosthenin separated into fractions in sucrose density gradients, it is concluded that the S degrees20w5.5 protein species is the myosin-like protein of thrombosthenin. The S degrees 20w8.0 protein is not fibrinogen but also has myosin-like properties and is believed to be myosin dimer. Species of higher S values seen in the presence of ATP and Mg2+ in the analytical ultracentrifuge and located in the higher density zones of the sucrose gradients all gave in SDS polyacrylamide gel electrophoresis a single band of molecular weight 46-47,000 daltons. These subunit proteins appear to be derived from a range of polymeric variants of the F-actin-like protein of the contractile complex. All these higher density F-actin-like proteins readily form superprecipitates and display syneresis when combined with rabbit skeletal muscle myosin or platelet myosin. They are also all capable of conferring upon these two myosins a Mg2+ activated ATPase activity. It is suggested that in thrombosthenin solutions a myosin monomer-dimer equilibrium state exists which can be directionally influenced by a number of factors. The coexistence in the solution of F-actin and Mg2+ ATP, for example, increases the propensity of the myosin-like protein to form the higher molecular weight aggregate. Such aggregation may be the initiating mechanism for the intracellular organization of the thick filaments of the actomyosin complex, preparatory to a contractile event.  相似文献   

13.
EmrE is a multidrug transporter that utilises the proton gradient across bacterial cell membranes to pump hydrophobic cationic toxins out of the cell. The structure of EmrE is very unusual, because it is an asymmetric homodimer containing eight alpha-helices, six of which form the substrate-binding chamber and translocation pathway. Despite this structural information, the precise oligomeric order of EmrE in both the detergent-solubilised state and in vivo is unclear, although it must contain an even number of subunits to satisfy substrate-binding data. We have studied the oligomeric state of EmrE, purified in a functional form in dodecylmaltoside, by high-resolution size-exclusion chromatography (hrSEC) and by analytical ultracentrifugation. The data from equilibrium analytical ultracentrifugation were analysed using a measured density increment for the EmrE-lipid-detergent complex, which showed that the purified EmrE was predominantly a dimer. This value was consistent with the apparent mass for the EmrE-lipid-detergent complex (137 kDa) determined by hrSEC. EmrE was purified under different conditions using minimal concentrations of dodecylmaltoside, which would have maintained the structure of any putative higher oligomeric states: this EmrE preparation had an apparent mass of 206 kDa by hrSEC and equilibrium analytical ultracentrifugation showed unequivocally that EmrE was a dimer, although it was associated with a much larger mass of phospholipid. In addition, the effect of the substrate tetraphenylphosphonium on the oligomeric state was also analysed for both preparations of EmrE; velocity analytical ultracentrifugation showed that the substrate had no effect on the oligomeric state. Therefore, in the detergent dodecylmaltoside and under conditions where the protein is fully competent for substrate binding, EmrE is dimeric and there is no evidence from our data to suggest higher oligomeric states. These observations are discussed in relation to the recently published structures of EmrE from two- and three-dimensional crystals.  相似文献   

14.
Dotson PP  Sinha J  Testa SM 《Biochemistry》2008,47(16):4780-4787
In the trans excision-splicing reaction, a Pneumocystis carinii group I intron-derived ribozyme binds an RNA substrate, excises a specific internal segment, and ligates the flanking regions back together. This reaction can occur both in vitro and in vivo. In this report, the first of the two reaction steps was analyzed to distinguish between two reaction mechanisms: ribozyme-mediated hydrolysis and nucleotide-dependent intramolecular transesterification. We found that the 3'-terminal nucleotide of the ribozyme is the first-reaction step nucleophile. In addition, the 3'-half of the RNA substrate becomes covalently attached to the 3'-terminal nucleotide of the ribozyme during the reaction, both in vitro and in vivo. Results also show that the identity of the 3'-terminal nucleotide influences the rate of the intramolecular transesterification reaction, with guanosine being more effective than adenosine. Finally, expected products of the hydrolysis mechanism do not form during the reaction. These results are consistent with only the intramolecular transesterification mechanism. Unexpectedly, we also found that ribozyme constructs become truncated in vivo, probably through intramolecular 3'-hydrolysis (self-activation), to create functional 3'-terminal nucleotides.  相似文献   

15.
The fission yeast Schizosaccharomyces pombe contains a gene on chromosome I that encodes a hypothetical nudix hydrolase, YA9E. The gene, designated aps1, has been cloned and the protein has been purified from Escherichia coli with a yield of 10 mg of Aps1/L of culture. Aps1, composed of 210 amino acids with a calculated molecular mass of 23 724 Da, behaves as a monomer with a sedimentation coefficient of 1.92 S as determined by analytical ultracentrifugation. The effective hydrodynamic radius is about 29 A as determined by both analytical ultracentrifugation and gel-filtration chromatography. Aps1, whose expression was detected in S. pombe by Western blotting, is an enzyme that catalyzes the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4A from Ap6A and ADP and ATP from Ap5A. Values of Km for Ap6A and Ap5A are 19 microM and 22 microM, respectively, and the corresponding values of kcat are 2.0 s-1 and 1.7 s-1, respectively. The enzyme has limited activity on Ap4A and negligible activity on Ap3A, ADP-ribose, and NADH. Aps1 catalyzes the hydrolysis of mononucleotides with decreasing activity in order from p5A to AMP. Optimal activity with Ap6A as substrate is observed at pH 7.6 and in the presence of 0.1-1 mM MnCl2. Aps1 is the first nudix hydrolase isolated from S. pombe, and it is the first enzyme identified with this specific substrate specificity and reaction products.  相似文献   

16.
Pdr5p is one of the major multidrug efflux pumps whose overexpression confers multidrug resistance (MDR) in Saccharomyces cerevisiae. By using our original assay system, a fungal strain producing inhibitors for Pdr5p was obtained and classified as Fusarium sp. Y-53. The purified inhibitors were identified as ionophore antibiotics, enniatin B, B1, and D, respectively. A non-toxic concentration of each enniatin (5 microg/ml, approximately 7.8 microM) strongly inhibited a Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. The enniatins accumulated a fluorescent dye rhodamine 123, a substrate of Pdr5p, into yeast cells. The mode of Pdr5p inhibition of enniatin was competitive against FK506, and its inhibitory activity was more potent with less toxicity than that of FK506. The enniatins showed similar inhibitory profile as FK506 against S1360 mutants (S1360A and S1360F) of Pdr5p. The enniatins did not inhibit the function of Snq2p, a homologue of Pdr5p. Thus, it was found that enniatins are potent and specific inhibitors for Pdr5p, with less toxicities than that of FK506.  相似文献   

17.
Homoserine dehydrogenase (HSD), which is required for the synthesis of threonine, isoleucine and methionine in fungi, is a potential target for novel antifungal drugs. In order to design effective inhibitors, the kinetic mechanism of Saccharomyces cerevisiae HSD and the stereochemistry of hydride transfer were examined. Product inhibition experiments revealed that yeast HSD follows an ordered Bi Bi kinetic mechanism, where NAD(P)H must bind the enzyme prior to aspartate semialdehyde (ASA) and homoserine is released first followed by NAD(P)+. H-(1,2,4-triazol-3-yl)-D,L-alanine was an uncompetitive inhibitor of HSD with respect to NADPH (K(ii)=3.04+/-0.18 mM) and a noncompetitive inhibitor with respect to ASA (K(is)=1.64+/-0.36 mM, K(ii)=3.84+/-0.46 mM), in agreement with the proposed substrate order. Both kinetic isotope and viscosity experiments provided evidence for a very rapid catalytic step and suggest nicotinamide release to be primarily rate limiting. Incubation of HSD with stereospecifically deuterated NADP[2H] and subsaturating amounts of aspartate semialdehyde revealed that the pro-S NADPH hydride is transferred to the aldehyde. The pH dependence of steady state kinetic parameters indicate that ionizable groups with basic pKs may be involved in substrate binding, consistent with the observation of Lys223 at the enzyme active site in the recently determined 3D structure [B. DeLaBarre, P.R. Thompson, G.D. Wright, A.M. Berghuis, Nat. Struct. Biol. 7 (2000) 238-244]. These findings provide the requisite foundation for future exploitation of fungal HSD in inhibitor design.  相似文献   

18.
Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcone synthesized by chalcone synthase (CHS) into (2S)-naringenin, an essential compound in the biosynthesis of anthocyanin pigments, inducers of Rhizobium nodulation genes, and antimicrobial phytoalexins. The 1.85 A resolution crystal structure of alfalfa CHI in complex with (2S)-naringenin reveals a novel open-faced beta-sandwich fold. Currently, proteins with homologous primary sequences are found only in higher plants. The topology of the active site cleft defines the stereochemistry of the cyclization reaction. The structure and mutational analysis suggest a mechanism in which shape complementarity of the binding cleft locks the substrate into a constrained conformation that allows the reaction to proceed with a second-order rate constant approaching the diffusion controlled limit. This structure raises questions about the evolutionary history of this structurally unique plant enzyme.  相似文献   

19.
Quantifying the interaction of drugs with carrier proteins in plasma is of importance for understanding effective drug delivery to disease-affected tissues. In this study, we employed analytical ultracentrifugation and steady-state fluorescence spectroscopy to characterize the interaction of a potential new anticancer drug, AG 1478-mesylate, with plasma proteins in a suspension of normal serum albumin (NSA). We found that mesylate salt of AG 1478, an epidermal growth factor receptor kinase inhibitor, sediments in 0.1%(w/v) NSA as a complex with a sedimentation coefficient of 3.8 S. This is consistent with the size of human serum albumin. This interaction was quantitated by meniscus depletion sedimentation and fluorescence titration analyses. AG 1478-mesylate binds to albumin with an apparent single-site affinity (K(d)) of 120 microM. In this article, we show that the cyclodextrin carrier molecule, Captisol, increases the apparent affinity of the hydrophobic AG 1478-mesylate for albumin (K(d)=4-6 microM), and we propose that the AG 1478-mesylate-Captisol (1:1) complex binds to albumin with at least 10-fold higher affinity than does AG 1478-mesylate ligand alone. A fluorenylmethoxycarbonyl-sulfonic acid (FMS) derivative of the 6-aminoquinazoline analog of AG 1478, which was designed to have improved serum-binding properties, was shown by fluorescence analysis to bind with approximately 100-fold greater affinity than the parent compound. This has significant implications in the effective delivery of therapeutic agents in vivo.  相似文献   

20.
Solution studies of the cytoplasmic domain (molecular mass approximately 40kDa) of band 3, the anion exchanger from human erythrocyte membranes, previously suggested a dimeric molecule on the basis of the relative techniques of calibrated gel filtration and calibrated preparative ultracentrifugation. This dimeric behavior is firmly established on an absolute basis by a combination of calibrated gel chromatography and absolute ultracentrifugation techniques. Sedimentation velocity in the analytical ultracentrifuge combined with calibrated gel chromatography give a molecular mass M of (77 +/- 4) kDa, a value confirmed by low-speed sedimentation equilibrium. Velocity sedimentation in the analytical ultracentrifuge gave a single sedimenting species with an s o 20,w of (3.74 +/- 0.07)S. Sedimentation equilibrium analysis was also used to establish the strength of the binding via the dissociation constant Kd, with a value from direct fitting of the concentration distribution curves of (2.8 +/- 0.5) microM, confirmed by a value of approximately 3 microM obtained from fitting a plot of molecular weight Mw,app versus cell loading concentration. Hydrodynamic calculations based on the classical translational frictional ratio showed that the protein was highly asymmetric, with an axial ratio of approximately 10:1, consistent with observations from electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号