首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA -. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA -.Abbreviations A830 Absorption change at 830 nm - Chl Chlorophyll - D1 primary electron donor to P680 - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - MOPS 3-(N-morpholino)propanesulfonic acid - P680 reaction center chlorophyll a molecule of photosystem II - PPBQ Phenyl-p-benzoquinone - PS II Photosystem II - QA, QB first and second quinone acceptors in PS II - V-DCIP rate of DCIP reduction - V-O2 rate of oxygen evolution - Y water-oxidizing enzyme system - CHAPS 3-Cyclohexylamino-propanesulfonic acid  相似文献   

2.
The distribution of the primary quinone and of the pheophytin acceptors has been studied in PS II particles isolated from Chlamydomonas reinhardtii, with respect to the distribution of the apoproteins of the two chlorophyll-protein complexes associated with the PS II core. We show that photoreduction of the primary quinone requires the presence of the 50 and 47 kDa polypeptides. On the contrary, charge separation between P-680 and the pheophytin acceptor molecules can occur within the chlorophyll-protein complex of which the 50 kDa polypeptide is the apoprotein. Functional analysis of the PS II fractions shows that an active PS II center contains one photoreducible quinone and one photoreducible pheophytin per 45 chlorophyll molecules. Stoichiometric analysis of the PS II fractions shows that a PS II reaction center contains 45 chlorophyll molecules associated with most likely one copy of the 50 kDa and the 47 kDa polypeptides.  相似文献   

3.
H.Y. Nakatani  B. Ke  E. Dolan  C.J. Arntzen 《BBA》1984,765(3):347-352
A Photosystem-II (PS-II)-enriched chloroplast submembrane fraction has been subjected to non-denaturing gel-electrophoresis. Two chlorophyll a (Chl a)-binding proteins associated with the core complex were isolated and spectrally characterized. The Chl protein with apparent apoprotein mass of 47 kDa (CP47) displayed a 695 nm fluorescence emission maximum (77 K) and light-induced absorption characteristics indicating the presence of the reaction center Chl, P-680, and its primary electron acceptor, pheophytin. A Chl protein of apparent apoprotein mass of 43 kDa (CP43) displayed a fluorescence emission maximum at 685 nm. We conclude that CP43 serves as an antenna Chl protein and the PS II reaction center is located in CP47.  相似文献   

4.
Prenylquinones and pheophytin a in a preparation of photosynthetic reaction center II from spinach chloroplasts were chemically determined. Each reaction center II had two molecules, each of plastoquinone-9 and pheophytin a, but practically no phylloquinone, α-tocopherylquinone or α-tocopherol.  相似文献   

5.
6.
Absorption spectra of the D1-D2-cytochrom b559 complex at 4°C were investigated at pressures up to 300 MPa. Pressure effects were mostly reversible and independent of the detergent used (CHAPS or dodecyl--D-maltoside). Red-shifts were observed under pressure for the chlorophyll Qy- and the -carotene S0 S2 bands. The relatively small Qy-shift of approximately 0.15 cm-1/MPa is an indication for the absence of strongly coupled chlorophyll dimers within the reaction center and supports earlier reports from low-temperature measurements (Chang HC, Jankowiak R, Reddy NRS and Small GJ (1995) Chem Phys 197: 307–321). The carotene red-shift (seen in CHAPS) is much larger (0.5 – 0.6 cm-1/MPa) and within the range observed for excitonically coupled chlorophylls. However, since carotenes are more sensitive to changes of refractive index, we do not consider this evidence for excitonically coupled carotenes. Varying the pH and the detergent induced only small effects. Pigment exchange using high pressure instead of elevated temperature was not possible under the conditions tested.  相似文献   

7.
The properties of Photosystem II electron donation were investigated by EPR spectrometry at cryogenic temperatures. Using preparations from mutants which lacked Photosystem I, the main electron donor through the Photosystem II reaction centre to the quinone-iron acceptor was shown to be the component termed Signal II. A radical of 10 G line width observed as an electron donor at cryogenic temperatures under some conditions probably arises through modification of the normal pathway of electron donation. High-potential cytochrome b-559 was not observed on the main pathway of electron donation. Two types of PS II centres with identical EPR components but different electron-transport kinetics were identified, together with anomalies between preparations in the amount of Signal II compared to the quinone-iron acceptor. Results of experiments using cells from mutants of Scenedesmus obliquus confirm the involvement of the Signal II component, manganese and high-potential cytochrome b-559 in the physiological process leading to oxygen evolution.  相似文献   

8.
The 688 nm absorption changes (ΔA688), indicating the photochemical turnover of chlorophyll aII (Chl aII) have been investigated under repetitive laser flash excitation conditions in spinach chlorplasts. It was found that under steady state conditions about 50–60% of the photo-oxidized primary donor of Photosystem II (PS II), Chl a+II, becomes re-reduced with a biphasic kinetics in the nanosecond time scale with half-life times of about 50 ns and 400 ns. The remaining Chl a+II becomes re-reduced in the microsecond range.  相似文献   

9.
Kumazaki S  Abiko K  Ikegami I  Iwaki M  Itoh S 《FEBS letters》2002,530(1-3):153-157
Primary photochemistry in photosystem I (PS I) reaction center complex from Acaryochloris marina that uses chlorophyll d instead of chlorophyll a has been studied with a femtosecond spectroscopy. Upon excitation at 630 nm, almost full excitation equilibration among antenna chlorophylls and 40% of the excitation quenching by the reaction center are completed with time constants of 0.6(±0.1) and 4.9(±0.6) ps, respectively. The rise and decay of the primary charge-separated state proceed with apparent time constants of 7.2(±0.9) and 50(±10) ps, suggesting the reduction of the primary electron acceptor chlorophyll (A0) and its reoxidation by phylloquinone (A1), respectively.  相似文献   

10.
Henk Vasmel  Jan Amesz  Arnold J. Hoff 《BBA》1986,852(2-3):159-168
The optical properties of the reaction center of the filamentous green bacterium Chloroflexus aurantiacus, that contains three bacteriochlorophyll (BChl) a and three bacteriopheophytin (BPh) a molecules, were analyzed in the near-infrared region with the aid of exciton theory. The coordinates obtained from the X-ray analysis of the reaction center of Rhodopseudomonas viridis (Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398) were used for the geometry of the reaction center of C. aurantiacus, with the replacement of one of the ‘accessory’ BChl molecules by BPh. The results were found to be in good agreement with experimental low-temperature absorption spectra, linear and circular dichroism and fluorescence polarization spectra and lead to the following conclusions. The allowed, low-energy exciton transition of the primary electron donor (P-865) is located at 887 nm and carries the dipole strength of approx. two BChl a monomers; the high-energy exciton transition, around 790 nm, is mixed with wave functions of other pigments, which explains its relatively small angle with respect to the 887 nm transition. The optical transition of the accessory BChl a molecule near 812 nm has some contribution of the BChls that constitute P-865. This can account for the experimentally observed reorientation and shift of this transition upon oxidation of P-865. Two of the BPh molecules are located on the same (probably the M) polypeptide subunit and show a clear splitting of absorption bands (11 nm) due to exciton coupling; the single BPh on the opposite branch shows hardly any exciton shift. Similar calculations for reaction centers of purple bacteria that contain four BChl a and two BPh a molecules resulted in a very low dipole strength for the high-energy transition of the primary donor due to antisymmetric mixing with both accessory BChl a wave functions and gave very little splitting of the absorption bands of BPh a. Our results indicate that the arrangement of the chromophores in reaction centers of C. aurantiacus is very similar to that in purple bacteria. The functional L-chains of the reaction centers of purple and filamentous green bacteria consist of pigments of the same type in a probably very similar arrangement.  相似文献   

11.
Recipient of the Society Award for Young Scientists 1991.  相似文献   

12.
Reconstitution of plastoquinone in the photosystem II D1/D2/cytochrome b-559 reaction centre complex, in the presence of the detergent Triton X-100, is reported. Illumination of the reconstituted system results in the reduction of cytochrome b-559, the process being partly herbicide-sensitive. In addition, the reconstitution of plastoquinone results in the ability of the isolated reaction centre to catalyse the photoreduction of 2,6-dichlorophenolindophenol in the presence of the exogenous electron donor diphenylcarbazide.  相似文献   

13.
Pure and active oxygen-evolving PS II core particles containing 35 Chl per reaction center were isolated with 75% yield from spinach PS II membrane fragments by incubation with n-dodecyl--D-maltoside and a rapid one step anion-exchange separation. By Triton X-100 treatment on the column these particles could be converted with 55% yield to pure and active PS II reaction center particles, which contained 6 Chl per reaction center.Abbreviations Bis-Tris bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane - Chl chlorophyll - CP29 Chl a/b protein of 29 kDa - Cyt b 559 cytochrome b 559 - DCBQ 2,5-dichloro-p-benzo-quinone - LHC II light-harvesting complex II, predominant Chl a/b protein - MES 2-[N-Morpholino]ethanesulfonic acid - Pheo pheophytin - PS H photosystem II - QA bound plastoquinone, serving as the secondary electron acceptor in PS II (after Pheo) - SDS sodiumdodecylsulfate  相似文献   

14.
The EPR characteristics of Photosystem II electron acceptors are described, in membrane and detergent-treated preparations from a mutant of Chlamydomonas reinhardii lacking Photosystem I and photosynthetic ATPase. The relationship between the quinone-iron and pheophytin acceptors is discussed and a heterogeneity of reaction centres is demonstrated such that only a minority of reaction centres were capable of secondary electron donation at temperatures below 100 K. Only these centres were therefore able to stabilise a reduced acceptor below 100 K. Parallel experiments using a barley mutant (viridis zb63) which also lacks Photosystem I, provide similar results indicating that the C. reinhardii system can provide a general model for the Photosystem II electron acceptor complex. The similarity of the system to that of the purple photosynthetic bacteria is discussed.  相似文献   

15.
Two nuclear gene mutants of pea, chlorotica-887 and chlorina-5756, are temperature-sensitive in the development of photosystem II activity. Low temperature flourescence emission spectra of leaves show that the peak at 697 nm from the reaction center of photosystem II is present when the mutants have been grown at 18°C, but absent when they have been grown at 30°C. For leaves of chlorina-5756 grown at 18°C the relative size of the peak at 697 nm is reduced compared to that of leaves of the wild type or chlorotica-887 grown at this temperature. Flourescence induction curves of leaves from wild type plants and chlorotica-887 grown at 18°C possess two steps, while those of leaves from chlorina-5756 grown at 18°C or 30°C and chlorotica-887 grown at 30°C show at fast rise to the maximal level of fluorescence. Measurements on chloroplasts isolated from the mutants indicated that the photosystem I activity per g leaf material is comparable for plants grown at 18°C and plants grown at 30°C. In contrast, no photosystem II activity was detected when the mutants had been grown at 30°C. It is suggested that these mutants are affected in a component required for the assembly of functional photosystem II complexes.  相似文献   

16.
The dynamics of light-induced closure of the PS II reaction centers was studied in intact, dark-adapted leaves by measuring the light-irradiance (I) dependence of the relative variable chlorophyll fluorescence V which is the ratio between the amplitude of the variable fluorescence induced by a pulse of actinic light and the maximal variable fluorescence amplitude obtained with an intense, supersaturating light pulse. It is shown that the light-saturation curve of V is a hyperbola of order n. The experimental values of n ranged from around 0.75 to around 2, depending on the plant material and the environmental conditions. A simple theoretical analysis confirmed this hyperbolic relationship between V and I and suggested that n could represent the apparent number of photons necessary to close one reaction center. Thus, experimental conditions leading to n values higher than 1 could indicate that, from a macroscopic viewpoint, more than one photon is necessary to close one PS II center, possibly due to changes in the relative concentrations of the different redox states of the PS II reaction center complexes at the quasi-steady state induced by the actinic light. On the other hand, the existence of environmental conditions resulting in n noticeably lower than 1 suggests the possibility of an electron flow between PS II reaction center complexes.Abbreviations F0 and Fm minimal and maximal levels of chlorophyll fluorescence emission, respectively - Fp peak fluorescence induced by a pulse of actinic light - I incident light irradiance (in W m-2) - PS II Photosystem II - P680 PS II reaction center - QA and QB primary and secondary (stable) electron acceptors of PS II - V relative variable chlorophyll fluorescence % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA% facqGH9aqpcaGGOaGaaeOramaaBaaaleaacaqGWbaabeaakiabgkHi% TiaabAeadaWgaaWcbaGaaeimaaqabaGccaGGPaGaai4laiaacIcaca% qGgbWaaSbaaSqaaiaab2gaaeqaaOGaeyOeI0IaaeOramaaBaaaleaa% caqGWaaabeaakiaacMcacaGGPaaaaa!47BD!\[(V = ({\text{F}}_{\text{p}} - {\text{F}}_{\text{0}} )/({\text{F}}_{\text{m}} - {\text{F}}_{\text{0}} ))\]  相似文献   

17.
The D1 protein, a key subunit of photosystem II reaction center, is synthesized as a precursor form with a carboxyl-terminal extension, in oxygenic photosynthetic organisms with some exceptions. This part of the protein is removed by the action of an endopeptidase, and the proteolytic processing is indispensable for the manifestation of oxygen-evolving activity in photosynthesis. The carboxyl-terminus of mature D1 protein, which appears upon the cleavage, has recently been demonstrated to be a ligand for a manganese atom in the Mn4Ca-cluster, which is responsible for the water oxidation chemistry in photosystem II, based on the isotope-edited Fourier transform infrared spectroscopy and the X-ray crystallography. On the other hand, the structure of a peptidase involved in the cleavage of precursor D1 protein has been resolved at a higher resolution, and the enzyme–substrate interactions have extensively been analyzed both in vivo and in vitro. The present article briefly summarizes the history of research and the present state of our knowledge on the carboxyl-terminal processing of precursor D1 protein in the photosystem II reaction center.  相似文献   

18.
D. J. Kyle  P. Haworth  C. J. Arntzen 《BBA》1982,680(3):336-342
The room-temperature fluorescence induction transients from stroma-free chloroplast membranes (in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea) have been analyzed to determine the effects of membrane protein phosphorylation on the connectivity between Photosystem (PS) II centers. Chloroplast membranes which have been incubated in the light with ATP exhibit: (1) a decrease in the variable fluorescence as a function of the initial fluorescence, (2) a shift from a sigmoidal to an exponential fluorescence induction curve, and (3) a reduced amount of the fast () component of the induction transient. These phenomenona are completely reversible by dark incubation of the samples (leading to protein dephosphorylation). We conclude that connectivity between PS II centers is reduced as a function of thylakoid membrane protein phosphorylation. This may in turn be the mechanism which increases the amount of absorbed excitation energy available to PS I.  相似文献   

19.
《FEBS letters》1989,250(2):459-463
Absorption, fluorescence, and CD spectral properties of the isolated D1/D2/cytochrome b-559 photosystem II reaction center complex were examined in stabilized reaction center material at 77 K. Spectral properties were dependent on the presence or absence of 0.05% Triton X-100 in the RC suspension medium, on the redox state of pheophytin, and on the state of inactivation of the complex. The specific spectral properties of the PS II RC complex in the red suggest that the primary donor is not a bacterial-type special pair and could be a monomer. Furthermore, the spectral properties in the PS II RC may be the result of excitonic interactions among all the porphyrin molecules in the complex. Interactions between β-carotene and porphyrins indicate a significant role for β-carotene in the PS II RC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号