首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. This novel MnII-dependent extracellular enzyme (Mr = 46,000) contains a single protoporphyrin IX prosthetic group and oxidizes phenolic lignin model compounds as well as a variety of other substrates. To elucidate the heme environment of this enzyme, we have studied its electron paramagnetic resonance and resonance Raman spectroscopic properties. These studies indicate that the native enzyme is predominantly in the high-spin ferric form and has a histidine as fifth ligand. The reduced enzyme has a high-spin, pentacoordinate ferrous heme. Fluoride and cyanide readily bind to the sixth coordination position of the heme iron in the native form, thereby changing MnP into a typical high-spin, hexacoordinate fluoro adduct or a low-spin, hexacoordinate cyano adduct, respectively. EPR spectra of 14NO- and 15NO-adducts of ferrous MnP were compared with those of horseradish peroxidase (HRP); the presence of a proximal histidine ligand was confirmed from the pattern of superhyperfine splittings of the NO signals centered at g approximately equal to 2.005. The appearance of the FeII-His stretch at approximately 240 cm-1 and its apparent lack of deuterium sensitivity suggest that the N delta proton of the proximal histidine of the enzyme is more strongly hydrogen bonded than that of oxygen carrier globins and that this imidazole ligand may be described as having a comparatively strong anionic character. Although resonance Raman frequencies for the spin- and coordination-state marker bands of native MnP, nu 3 (1487), nu 19 (1565), and nu 10 (1622 cm-1), do not fall into frequency regions expected for typical penta- or hexacoordinate high-spin ferric heme complexes, ligation of fluoride produces frequency shifts of these bands very similar to those observed for cytochrome c peroxidase and HRP. Hence, these data strongly suggest that the iron in native MnP is predominantly high-spin pentacoordinate. Analysis of the Raman frequencies indicates that the dx2-y2 orbital of the native enzyme is at higher energy than that of metmyoglobin. These features of the heme in MnP must be favorable for the peroxidase catalytic mechanism involving oxidation of the heme iron to FeIV. Consequently, it is most likely that the heme environment of MnP resembles those of HRP, cytochrome c peroxidase, and lignin peroxidase.  相似文献   

2.
Resonance Raman spectroscopy is used to probe the effect of calcium depletion on the heme group of horseradish peroxidase C at pH 8. Polarized Raman spectra are recorded with an argon ion laser at eight different wavelengths to provide a sound database for a reliable spectral decomposition. Upon calcium depletion, the spectrum is indicative of a predominantly pentacoordinated high spin state of the heme iron coexisting with small fractions of hexacoordinated high and low spin states. The dominant quantum mixed spin state of native ferric horseradish peroxidase, which is characteristic for class III peroxidases, is not detectable in the spectrum of the enzyme with partial distal Ca(2+) depletion. The quenching of the quantum mixed spin state and the predominance of the pentacoordinated high spin state are likely to arise from distortions induced by distal calcium depletion, which translates into a weaker Fe-N(epsilon)(His) bond and a more tilted imidazole. A correlation is proposed between the lower enzyme activity and the elimination of the pentacoordinated quantum mixed state upon Ca(2+) depletion.  相似文献   

3.
The pentaheme cytochrome c nitrite reductase (NrfA) of Escherichia coli is responsible for nitrite reduction during anaerobic respiration when nitrate is scarce. The NrfA active site consists of a hexacoordinate high-spin heme with a lysine ligand on the proximal side and water/hydroxide or substrate on the distal side. There are four further highly conserved active site residues including a glutamine (Q263) positioned 8 A from the heme iron for which the side chain, unusually, coordinates a conserved, essential calcium ion. Mutation of this glutamine to the more usual calcium ligand, glutamate, results in an increase in the K m for nitrite by around 10-fold, while V max is unaltered. Protein film voltammetry showed that lower potentials were required to detect activity from NrfA Q263E when compared with native enzyme, consistent with the introduction of a negative charge into the vicinity of the active site heme. EPR and MCD spectroscopic studies revealed the high spin state of the active site to be preserved, indicating that a water/hydroxide molecule is still coordinated to the heme in the resting state of the enzyme. Comparison of the X-ray crystal structures of the as-prepared, oxidized native and mutant enzymes showed an increased bond distance between the active site heme Fe(III) iron and the distal ligand in the latter as well as changes to the structure and mobility of the active site water molecule network. These results suggest that an important function of the unusual Q263-calcium ion pair is to increase substrate affinity through its role in supporting a network of hydrogen bonded water molecules stabilizing the active site heme distal ligand.  相似文献   

4.
The interaction of hydroxylamine (HA) with Arthromyces ramosus peroxidase (ARP) was investigated by kinetic, spectroscopic, and x-ray crystallographic techniques. HA inhibited the reaction of native ARP with H(2)O(2) in a competitive manner. Electron absorption and resonance Raman spectroscopic studies indicated that pentacoordinate high spin species of native ARP are converted to hexacoordinate low spin species upon the addition of HA, strongly suggesting the occurrence of a direct interaction of HA with ARP heme iron. Kinetic analysis exhibited that the apparent dissociation constant is 6.2 mm at pH 7.0 and that only one HA molecule likely binds to the vicinity of the heme. pH dependence of HA binding suggested that the nitrogen atom of HA could be involved in the interaction with the heme iron. X-ray crystallographic analysis of ARP in complex with HA at 2.0 A resolution revealed that the electron density ascribed to HA is located in the distal pocket between the heme iron and the distal His(56). HA seems to directly interact with the heme iron but is too far away to interact with Arg(52). In HA, it is likely that the nitrogen atom is coordinated to the heme iron and that hydroxyl group is hydrogen bonded to the distal His(56).  相似文献   

5.
Spin state changes in the iron center of cytochrome P-450 during the catalytic cycle suggest alterations in the heme environment that insure proper substrate binding, an increase in redox potential, the formation of an active Fe-O complex, and the attack on the substrate. We used the spin state changes of the iron following physico-chemical perturbations, as an intrinsic probe of discrete changes around the heme, or of larger ones in the protein conformation. These environmental perturbations included temperature, solvent, substrate, and ionic environment. Aqueous and hydro-organic buffers provide complementary data and interpretations; the mixed solvent accommodates temperatures suitable for direct reaction rate measurements and amplified low to high spin transition. The results suggest that the group determining the heme spin state is influenced by the electrostatic potential created by several negative charges near the heme; the modulation of the spin state by various factors reflects the modulation of the electrostatic potential and of the internal paH value. Conformational changes of the whole protein are also indicated by the large entropy terms and their variation with experimental conditions.  相似文献   

6.
Aromatic substrate binding to peroxidases is mediated through hydrophobic and hydrogen bonding interactions between residues on the distal side of the heme and the substrate molecule. The effects of perturbing these interactions are investigated by an electronic absorption and resonance Raman study of benzohydroxamic acid (BHA) binding to a series of mutants of horseradish peroxidase isoenzyme C (HRPC). In particular, the Phe179 --> Ala, His42 --> Glu variants and the double mutant His42 --> Glu:Arg38 --> Leu are studied in their ferric state at pH 7 with and without BHA. A comparison of the data with those previously reported for wild-type HRPC and other distal site mutants reaffirms that in the resting state mutation of His42 leads to an increase of 6-coordinate aquo heme forms at the expense of the 5-coordinate heme state, which is the dominant species in wild-type HRPC. The His42Glu:Arg38Leu double mutant displays an enhanced proportion of the pentacoordinate heme state, similar to the single Arg38Leu mutant. The heme spin states are insensitive to mutation of the Phe179 residue. The BHA complexes of all mutants are found to have a greater amount of unbound form compared to the wild-type HRPC complex. It is apparent from the spectral changes induced on complexation with BHA that, although Phe179 provides an important hydrophobic interaction with BHA, the hydrogen bonds formed between His42 and, in particular, Arg38 and BHA assume a more critical role in the binding of BHA to the resting state.  相似文献   

7.
One- and two-dimensional 1H NMR spectroscopy has been used to probe the active site of the high spin ferric resting state and the low spin, cyanide-inhibited derivative of isozyme H2 of the lignin peroxidase, LiP, from Phanerochaete chrysosporium strain BKM 1767. One-dimensional NMR revealed a resting state LiP that is five coordinate at 25 degrees C with an electronic structure similar to that of horseradish peroxidase, HRP. Differential paramagnetic relaxivity was used to identify the C beta H signals of the axial His177. A combination of bond correlation spectroscopy and nuclear Overhauser effect spectroscopy of cyanide-inhibited LiP (LiP-CN) has allowed the assignment of all resolved heme resonances without recourse to isotope labeling, as well as those of the proximal His177 and the distal His48. The surprising effectiveness of the two dimensional NMR methods on such a large and paramagnetic protein indicates that such two dimensional experiments can be expected to have major impact on solution structure determination of diverse classes of heme peroxidases. The two dimensional NMR data of LiP-CN reveal a heme contact shift pattern that reflects a close similarity to that of HRP-CN, including the unusual in-plane trans and cis orientation of the 2- and 4-vinyls. The axial His177 also exhibits the same orientation relative to the heme as in HRP-CN. The proximal His177 contact shifted resonances of both the low spin LiP-CN and high spin LiP are shown to reflect significantly reduced hydrogen bond donation by, or imidazolate character for, the axial histidine in LiP relative to HRP, which may explain the higher redox potential of LiP. The signals are identified for a distal residue that originates from the protonated His48 with disposition relative to the heme similar to that found for the distal His42 in HRP-CN. In contrast, the absence of any resolved signals attributable to an Arg44 in LiP-CN suggest that this distal residue has an altered orientation relative to the heme compared with that of the conserved Arg38 in HRP-CN (Thanabal, V., de Ropp, J. S., and La Mar, G. N. (1987) J. Am. Chem. Soc. 109, 7516-7525).  相似文献   

8.
Chen Z  Wang LH  Schelvis JP 《Biochemistry》2003,42(9):2542-2551
Thromboxane synthase is a hemethiolate enzyme that catalyzes the isomerization of prostaglandin H2 to thromboxane A2. We report the first resonance Raman (RR) spectra of recombinant human thromboxane synthase (TXAS) in both the presence and the absence of substrate analogues U44069 and U46619. The resting enzyme and its U44069 complex are found to have a 6-coordinate, low spin (6c/ls) heme, in agreement with earlier experiments. The U46619-bound enzyme is detected as a 6c/ls heme too, which is in contradiction with a previous conclusion based on absorption difference spectroscopy. Two new vibrations at 368 and 424 cm(-1) are observed upon binding of the substrate analogues in the heme pocket and are assigned to the second propionate and vinyl bending modes, respectively. We interpret the changes in these vibrational modes as the disruption of the protein environment and the hydrogen-bonding network of one of the propionate groups when the substrate analogues enter the heme pocket. We use carbocyclic thromboxane A2 (CTA2) to convert the TXAS heme cofactor to its 5-coordinate, high spin (5c/hs) form, as is confirmed by optical and RR spectroscopy. In this 5c/hs state of the enzyme, the Fe-S stretching frequency is determined at 350 cm(-1) with excitation at 356.4 nm. This assignment is supported by comparison to the spectrum of resting enzyme excited at 356.4 nm and by exciting at different wavelengths. Implications of our findings for substrate binding and the catalytic mechanism of TXAS will be discussed.  相似文献   

9.
Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.  相似文献   

10.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

11.
Laberge M  Szigeti K  Fidy J 《Biopolymers》2004,74(1-2):41-45
Horseradish peroxidase C (HRPC) is a class III peroxidase whose structure is stabilized by the presence of two endogenous calcium atoms. Calcium removal has been shown to decrease the enzymatic activity of the enzyme. The spin state of the iron, a mixture of high spin (HS) and mixed quantum spin state (QS) consisting of intermediate spin (IS) 3/2 + (HS) 5/2, is also significantly affected by calcium removal, going from a predominant QS component to a predominant HS component upon removal of one calcium. Removal of both calcium ions, however, results in the appearance of a significant LS contribution, easily monitored in the charge transfer (CT) band region by low-T absorption. Normal structural decomposition (NSD) calculations of the in-plane (ip) modes of the heme extracted from HRPC native and Ca(2+)-depleted models show that removal of the proximal calcium is associated with perturbed E(u) and increased A(1g) ip distortions of the heme. The effect of complete or distal calcium removal on the heme also results in increased A(1g) ip distortions, but in significantly decreased E(u) distortions. The overall effect is to decrease the nonplanarity of the heme: the total ip distortion of the native HRPC heme is 0.200 and 0.134 A for the Ca(2+)-depleted species. Our NSD results corroborate the role proposed for the protein matrix, namely to fine-tune the active site by inducing subtle changes in heme planarity and spin state of the iron.  相似文献   

12.
Absorption UV-VIS and pre-resonance Raman spectra of acidic cyt c solutions with a series of thiols added (thiophenol, n-propanethiol, isopropanethiol, L-cysteine, dithiothreitol, 2-mercaptoethanol, N-acetyl-L-cysteine, p-acetamidothiophenol, 2-mercaptoethanamine, thioglycolic acid and mercaptopropionic acid), are presented. Interactions of cyt c molecule with the thiols were studied with the aim to identify binding of the thiols with the cyt c heme as its iron axial ligands. Absorption and Raman spectra showed some correlation between maxima of 700 nm region absorption band (typical for Fe-S axial bond in cyt c heme) and also wave numbers of spin state marker and axial ligand sensitive Raman bands on one, and pKa constant values of appropriate thiols on the other hand. These results imply thiol replacement of Met-80 from axial bond with heme iron and suggest that the force of Fe-L-cysteine axial bond is very close to the native axial bond (Fe-Met) for cyt c in neutral solution.  相似文献   

13.
The techniques of theoretical chemistry embodied in ab initio and semiempirical quantum mechanical and empirical energy methods have been used to elucidate the relationship between structure, spectra and function of the oxidative metabolizing heme proteins, the cytochrome P-450s, using a recent X-ray structure of a P-450cam-camphor complex. Specifically, the origin of the spin state changes when substrate binds to the oxidized resting state and the nature of the transient biologically active oxygen transfer state have been described. Mechanisms of hydroxylation and epoxidation, the two fundamental oxidative reactions performed by these enzymes, have been deduced and the role of substrate binding and orientation on product distribution investigated.  相似文献   

14.
Resonance Raman scattering from cow milk lactoperoxidase (LPO) and its complexes with various electron donors and inhibitors was investigated. The Raman spectrum of LPO is strikingly close to that of hog intestinal peroxidase but distinctly dissimilar to that of horseradish peroxidase (HRP). The v10 frequency suggested the six-coordinate high-spin structure of heme for native LPO in contrast with the five-coordinate high-spin structure for HRP. For the v10 band, benzohydroxamic acid caused a frequency shift with HRP but not with LPO. Guaiacol, o-toluidine, and histidine brought about a frequency shift of the v4 mode for LPO but not for HRP. The frequency shift was restored upon removal of the substrate or inhibitor by dialysis. The down shift of the v4 frequency is considered to represent an appreciable donation of electrons from the substrate or inhibitor to the porphyrin LUMO and thus their direct interaction with the heme group. From the relative intensity of the shifted and unshifted v4 lines, the dissociation constant was determined to be Kd = 52 mM for guaiacol and Kd = 87 mM for histidine at pH 7.4. The binding of histidine was relatively retarded in the presence of sulfate anion (Kd = 150 mM for 0.53 M sulfate present), and imidazole alone yielded no frequency shift, indicating the binding of the carboxyl group of histidine to the protein cationic site on one hand and a weak charge-transfer interaction between the imidazole group and the heme group on the other.  相似文献   

15.
Maeda Y  Fujihara M  Ikeda I 《Biopolymers》2002,67(2):107-112
The structure of horseradish peroxidase (HRP) in phosphate buffered saline (PBS)/dimethyl sulfoxide (DMSO) mixed solvents at different compositions is investigated by IR, electronic absorption, and fluorescence spectroscopies. The fluorescence spectra and the amide I spectra of ferric HRP [HRP(Fe3+)] show that overall structural changes are relatively small up to 60% DMSO. Although the amide I band of HRP(Fe3+) shows a gradual change in the secondary structure and a decrease in the contents of a helices, its fluorescence spectra indicate that the distance between the heme and Trp173 is almost constant. In contrast, the changes in the positions of the Soret bands for resting HRP(Fe3+) and catalytic intermediates (compounds I and II) and the IR spectra at the C-O stretching vibration mode of carbonyl ferrous HRP [HRP(Fe2+)-CO] show that the microenvironment in the distal heme pocket is altered, even with low DMSO contents. The large reduction of the catalytic activity of HRP even at low DMSO contents can be attributed to the structural transition in the distal heme pocket. In PBS/DMSO mixtures containing more than 70 vol % DMSO, HRP undergoes large structural changes, including a large loss of the secondary structure and a dissociation of the heme from the apoprotein. The presence of the components of the amide I band that can be assigned to strongly hydrogen bonding amide C=O groups at 1616 and 1684 cm(-1) suggests that the denatured HRP may aggregate through strong hydrogen bonds.  相似文献   

16.
The endogenous calcium ion (Ca2+) in horseradish peroxidase (HRP) was removed to cause substantial changes in the proton NMR spectra of the enzyme in various oxidation/spin states. The spectral changes were interpreted as arising from the substantial alterations in the heme environments, most likely the heme proximal and distal sides. The comparative kinetic and redox studies revealed that these conformational changes affect the reduction process of compound II, resulting in the decrease of the enzymatic activity of HRP. It is also revealed from the ESR spectrum and the temperature dependences of the NMR and optical absorption spectra of the Ca2+-free enzyme that the heme iron atom of the Ca2+-free enzyme is in a thermal spin mixing between ferric high and low spin states, in contrast to that of the native enzyme. These results show that Ca2+ functions in maintaining the protein structure in the heme environments as well as the spin state of the heme iron, in favor of the enzymatic activity of HRP.  相似文献   

17.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

18.
The assignment of resolved hyperfine-shifted resonances in high-spin resting state horseradish peroxidase (HRP) and its double-oxidized reactive form, compound I (HRP-I), has been carried out by using the nuclear Overhauser effect (NOE) starting with the known heme methyl assignments in each species. In spite of the efficient spin-lattice relaxation and very broad resonances, significant NOEs were observed for all neighboring pyrrole substituents, which allowed the assignment of the elusive propionate alpha-methylene protons. In the resting state HRP, this leads directly to the identity of the proximal His-170 H beta peaks. The determination that one of the most strongly contact-shifted single proton resonances in HRP-I does not arise from the porphyrin dictates that the cation radical must be delocalized to some amino acid residue. The relaxation properties of the non-heme contact-shifted signal in HRP-I support the identity of this contributing residue as the proximal His-170. Detailed analysis of changes in both contact shift pattern and NOEs indicates that compound I formation is accompanied by a approximately 5 degree rotation of the 6-propionate group. The implication of a porphyrin cation radical delocalized over the proximal histidine for the proposed location of the solely amino acid centered radical in compound I of related cytochrome c peroxidase is discussed.  相似文献   

19.
Resonance Raman spectra are reported for native horseradish peroxidase (HRP) and cytochrome c peroxidase (CCP) at 290, 77 and 9 K, using 406.7 nm excitation, in resonance with the Soret electronic transition. The spectra reveal temperature-dependent equilibria involving changes in coordination or spin state. At 290 K and pH 6.5, CCP contains a mixture of 5- and 6-coordinate high-spin FeIII heme while at 9 K the equilibrium is shifted entirely to the 6-coordinate species. The spectra indicate weak binding of H2O to the heme Pe, consistent with the long distance, 2.4 Å, seen in the crystal structure. At 290 K HRP also contains a mixture of high-spin FeIII hemes with the 5-coordinate form predominant. At low temperature, a small 6-coordinate high-spin component remains but the 5-coordinate high-spin spectrum is replaced by another which is characteristic either of 6-coordinate low-spin or 5-coordinate intermediate spin heme. The latter species is definitely indicated by previous EPR studies at low temperature. This behavior implies that, in contrast to CCP, the distal coordination site of HRP is only partially occupied by H2O at any temperature and that lowering the temperature significantly weakens the Fe-proximal imidazole bond. Consistent with this inference, the 77 K spectrum of reduced HRP shows an appreciable fraction of molecules having an Fe-imidazole stretching frequency of 222 cm−1, a value indicating weakened H-bonding of the proximal imidazole.

Resonance Roman spectroscopy Horseradish peroxidase Cytochrome c peroxidase Coordination equilibrium  相似文献   


20.
Resonance Raman (RR) spectroscopy of lignin peroxidase (ligninase, dairylpropane oxygenase) from the basidiomycete Phanerochaete chrysosporium suggests two different coordination states for the native ferric enzyme. Evidence for a high-spin, hexacoordinate ferric protoporphyrin IX was presented by Andersson et al. [Andersson, L. A., Renganathan, V., Chiu, A.A., Loehr, T. M., & Gold, M. H. (1985) J. Biol. Chem. 260, 6080-6087], whereas Kuila et al. [Kuila, D., Tien, M., Fee, J. A., & Ondrias, M. R. (1985) Biochemistry 24, 3394-3397] proposed a high-spin, pentacoordinate ferric system. Because the two RR spectral studies were performed at different temperatures, we explored the possibility that lignin peroxidase might exhibit temperature-dependent coordination-state equilibria. Resonance Raman results presented herein indicate that this hypothesis is indeed correct. At or near 25 degrees C, the ferric iron of lignin peroxidase is predominantly high spin, pentacoordinate; however, at less than or equal to 2 degrees C, the high-spin, hexacoordinate state dominates, as indicated by the frequencies of well-documented spin- and coordination-state marker bands for iron protoporphyrin IX. The temperature-dependent behavior of lignin peroxidase is thus similar to that of cytochrome c peroxidase (CCP). Furthermore, lignin peroxidase, like horseradish peroxidase (HRP) and CCP, clearly has a vacant coordination site trans to the native fifth ligand at ambient temperature. High-frequency RR spectra of compound II of lignin peroxidase are also presented. The observed shifts to higher frequency for both the oxidation-state marker band v4 and the spin- and coordination-state marker band v10 are similar to those reported for the compound II forms of HRP and lactoperoxidase and for ferryl myoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号