首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The purpose of this study was to assess the effect of high altitude (HA) on work of breathing and external work capacity. On the basis of simultaneous records of esophageal pressure and lung volume, the mechanical power of breathing (Wrs) was measured in four normal subjects during exercise at sea level (SL) and after a 1-mo sojourn at 5,050 m. Maximal exercise ventilation (VEmax) and maximal Wrs were higher at HA than at SL (mean 185 vs. 101 l/min and 129 vs. 40 cal/min, respectively), whereas maximal O2 uptake averaged 2.07 and 3.03 l/min, respectively. In three subjects, the relationship of Wrs to minute ventilation (VE) was the same at SL and HA, whereas, in one individual, Wrs for any given VE was consistently lower at HA. Assuming a mechanical efficiency (E) of 5%, the O2 cost of breathing at HA and SL should amount to 26 and 5.5% of maximal O2 uptake, whereas for E of 20% the corresponding values were 6.5 and 1.4%, respectively. Thus, at HA, Wrs may substantially limit external work unless E is high. Although at SL VEmax did not exceed the critical VE, at which any increase in VE is not useful in terms of body energetics even for E of 5%, at HA VEmax exceeded critical VE even for E of 20%.  相似文献   

2.
Cerebral autoregulation is impaired in Himalayan high-altitude residents who live above 4,200 m. This study was undertaken to determine the altitude at which this impairment of autoregulation occurs. A second aim of the study was to test the hypothesis that administration of oxygen can reverse this impairment in autoregulation at high altitudes. In four groups of 10 Himalayan high-altitude dwellers residing at 1,330, 2,650, 3,440, and 4,243 m, arterial oxygen saturation (Sa(O(2))), blood pressure, and middle cerebral artery blood velocity were monitored during infusion of phenylephrine to determine static cerebral autoregulation. On the basis of these measurements, the cerebral autoregulation index (AI) was calculated. Normally, AI is between zero and 1. AI of 0 implies absent autoregulation, and AI of 1 implies intact autoregulation. At 1,330 m (Sa(O(2)) = 97%), 2,650 m (Sa(O(2)) = 96%), and 3,440 m (Sa(O(2)) = 93%), AI values (mean +/- SD) were, respectively, 0.63 +/- 0.27, 0.57 +/- 0.22, and 0.57 +/- 0.15. At 4,243 m (Sa(O(2)) = 88%), AI was 0.22 +/- 0.18 (P < 0.0005, compared with AI at the lower altitudes) and increased to 0.49 +/- 0.23 (P = 0.008, paired t-test) when oxygen was administered (Sa(O(2)) = 98%). In conclusion, high-altitude residents living at 4,243 m have almost total loss of cerebral autoregulation, which improved during oxygen administration. Those people living at 3,440 m and lower have still functioning cerebral autoregulation. This study showed that the altitude region between 3,440 and 4,243 m, marked by Sa(O(2)) in the high-altitude dwellers of 93% and 88%, is a transitional zone, above which cerebral autoregulation becomes critically impaired.  相似文献   

3.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

4.
Cerebral vasomotor reactivity at high altitude in humans   总被引:3,自引:0,他引:3  
The purpose of this study was twofold:1) to determine whether at highaltitude cerebral blood flow (CBF) as assessed during CO2 inhalation and duringhyperventilation in subjects with acute mountain sickness (AMS) wasdifferent from that in subjects without AMS and2) to compare the CBF as assessedunder similar conditions in Sherpas at high altitude and in subjects atsea level. Resting control values of blood flow velocity in themiddle cerebral artery (VMCA), pulseoxygen saturation (SaO2), andtranscutaneous PCO2 were measured at4,243 m in 43 subjects without AMS, 17 subjects with AMS, 20 Sherpas,and 13 subjects at sea level. Responses ofCO2 inhalation andhyperventilation onVMCA,SaO2, and transcutaneous PCO2 were measured, and the cerebralvasomotor reactivity (VMR = VMCA/PCO2)was calculated as the fractional change ofVMCA per Torrchange of PCO2, yielding ahypercapnic VMR and a hypocapnic VMR. AMS subjects showeda significantly higher resting controlVMCA than didno-AMS subjects (74 ± 22 and 56 ± 14 cm/s, respectively;P < 0.001), andSaO2 was significantly lower (80 ± 8 and 88 ± 3%, respectively; P < 0.001). Resting control VMCA values inthe sea-level group (60 ± 15 cm/s), in the no-AMS group, and inSherpas (59 ± 13 cm/s) were not different. Hypercapnic VMR valuesin AMS subjects were 4.0 ± 4.4, in no-AMS subjects were 5.5 ± 4.3, in Sherpas were 5.6 ± 4.1, and in sea-level subjects were 5.6 ± 2.5 (not significant). Hypocapnic VMR values were significantly higher in AMS subjects (5.9 ± 1.5) compared with no-AMS subjects (4.8 ± 1.4; P < 0.005) but werenot significantly different between Sherpas (3.8 ± 1.1) and thesea-level group (2.8 ± 0.7). We conclude that AMS subjects havegreater cerebral hemodynamic responses to hyperventilation, higherVMCAresting control values, and lower SaO2 compared with no-AMSsubjects. Sherpas showed a cerebral hemodynamic patternsimilar to that of normal subjects at sea level.  相似文献   

5.
6.
When unacclimatized lowlanders exercise at high altitude, blood lactate concentration rises higher than at sea level, but lactate accumulation is attenuated after acclimatization. These responses could result from the effects of acute and chronic hypoxia on beta-adrenergic stimulation. In this investigation, the effects of beta-adrenergic blockade on blood lactate and other metabolites were studied in lowland residents during 30 min of steady-state exercise at sea level and on days 3, 8, and 20 of residence at 4300 m. Starting 3 days before ascent and through day 15 at high altitude, six men received propranolol (80 mg three times daily) and six received placebo. Plasma lactate accumulation was reduced in propranolol- but not placebo-treated subjects during exercise on day 3 at high altitude compared to sea-level exercise of the same percentage maximal oxygen uptake (VO2max). Plasma lactate accumulation exercise on day 20 at high altitude was reduced in both placebo- and propranolol-treated subjects compared to exercise of the same percentage VO2max performed at sea level. The blunted lactate accumulation during exercise on day 20 at high altitude was associated with reduced muscle glycogen utilization. Thus, increased plasma lactate accumulation in unacclimatized lowlanders exercising at high altitude appears to be due to increased beta-adrenergic stimulation. However, acclimatization-induced changes in muscle glycogen utilization and plasma lactate accumulation are not adaptations to chronically increased beta-adrenergic activity.  相似文献   

7.
8.
9.
10.
11.
To examine hemostasis after physical exercise at altitudes easily accessible to tourists by public transport, 20 young male volunteers were exposed to 3,457 m above sea level. Ten of them were subjected to an exhaustive exercise for about 8 min on a bicycle ergometer. The preexercise samples (n = 20) taken 1 h after arrival showed no significant alteration of coagulation compared with control values at 600 m. After the exercise the clotting times (P less than 0.001) and euglobulin lysis times (P less than 0.001) were shortened, whereas factor VIII activity (P less than 0.001) was elevated. There was, however, no significant difference in fibrinopeptide A levels between the exercise and the control group. Ethanol gelation test remained negative. We found no rise in fibrin(ogen) degradation products and fibrin(ogen) fragment E and thus conclude that there is no evidence for clinically relevant intravascular coagulation after short-term strenuous physical exercise at altitude.  相似文献   

12.
13.
Hormonal responses to graded exercise of eight low altitude residents were examined at sea level (SL) and after 1 (acute) and 11 (chronic) days at 4,300 m (HA). Caloric, water, and electrolyte intakes were controlled, as were temperature and humidity. Blood was sampled at rest and during light and moderate upright bicycle exercise (20 min at 40% and 75% of maximal O2 uptake, respectively). Mean VO2 max at HA was 27% lower than at SL. Resting plasma levels of aldosterone (Aldo), renin, and angiotensin II (A II) were significantly lower (P smaller than 0.05) on day 1 at HA compared to SL, but returned to SL values by day 11. Plasma cortisol values at rest were similar at SL and HA and were not significantly altered by light or moderate exercise. Renin, A II, and Aldo rose progressively with increasing workload in each environment. With acute HA, renin and Aldo were lower than at either SL or chronic HA. The chronic HA levels tended to approximate SL findings, implying adaptation. The data suggest that aldosterone is predominantly under the control of the renin-angiotensin system during graded exercise at sea level and that the response of this system is altered on acute high-altitude exposure.  相似文献   

14.
15.
16.
17.
To investigate the effects of both exercise and acute exposure to high altitude on ventilation-perfusion (VA/Q) relationships in the lungs, nine young men were studied at rest and at up to three different levels of exercise on a bicycle ergometer. Altitude was simulated in a hypobaric chamber with measurements made at sea level (mean barometric pressure = 755 Torr) and at simulated altitudes of 5,000 (632 Torr), 10,000 (523 Torr), and 15,000 ft (429 Torr). VA/Q distributions were estimated using the multiple inert gas elimination technique. Dispersion of the distributions of blood flow and ventilation were evaluated by both loge standard deviations (derived from the VA/Q 50-compartment lung model) and three new indices of dispersion that are derived directly from inert gas data. Both methods indicated a broadening of the distributions of blood flow and ventilation with increasing exercise at sea level, but the trend was of borderline statistical significance. There was no change in the resting distributions with altitude. However, with exercise at high altitude (10,000 and 15,000 ft) there was a significant increase in dispersion of blood flow (P less than 0.05) which implies an increase in intraregional inhomogeneity that more than counteracts the more uniform topographical distribution that occurs. Since breathing 100% O2 at 15,000 ft abolished the increased dispersion, the greater VA/Q mismatching seen during exercise at altitude may be related to pulmonary hypertension.  相似文献   

18.
The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号