首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRK1/PKN is a member of the protein kinase C (PKC) superfamily of serine/threonine protein kinases. Despite its important role as a RhoA effector, limited information is available regarding how this kinase is regulated. We show here that the last seven amino acid residues at the C-terminus is dispensable for the catalytic activity of PRK1 but is critical for the in vivo stability of this kinase. Surprisingly, the intact hydrophobic motif in PRK1 is dispensable for 3-phosphoinositide-dependent kinase-1 (PDK-1) binding and phosphorylation of the activation loop, as the PRK1-Delta940 mutant lacking the last two residues of the hydrophobic motif and the last 5 residues at the C-terminus interacts with PDK-1 in vivo and has a similar specific activity as the wild-type protein. We also found that the last four amino acid residues at the C-terminus of PRK1 is critical for the full lipid responsiveness as the PRK1-Delta942 deletion mutant is no longer activated by arachidonic acid. Our data suggest that the very C-terminus in PRK1 is critically involved in the control of the catalytic activity and activation by lipids. Since this very C-terminal segment is the least conserved among members of the PKC superfamily, it would be a promising target for isozyme-specific pharmaceutical interventions.  相似文献   

2.
PRK2/PKNγ is a Rho effector and a member of the protein kinase C superfamily of serine/threonine kinases. Here, we explore the structure-function relationship between various motifs in the C-terminal half of PRK2 and its kinase activity and regulation. We report that two threonine residues at conserved phosphoacceptor position in the activation loop and the turn motif are essential for the catalytic activity of PRK2, but the phosphomimetic Asp-978 at hydrophobic motif is dispensable for kinase catalytic competence. Moreover, the PRK2-Δ958 mutant with the turn motif truncated still interacts with 3-phosphoinositide-dependent kinase-1 (PDK-1). Thus, both the intact hydrophobic motif and the turn motif in PRK2 are dispensable for the binding of PDK-1. We also found that while the last seven amino acid residues at the C-terminus of PRK2 are not required for the activation of the kinase by RhoA in vitro, however, the extreme C-terminal segment is critical for the full activation of PRK2 by RhoA in cells in a GTP-dependent manner. Our data suggest that the extreme C-terminus of PRK2 may represent a potential drug target for effector-specific pharmacological intervention of Rho-medicated biological processes.  相似文献   

3.
The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCalpha is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of approximately 60% of the catalytic activity of the mutant PKCalpha, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCalpha in immune complex kinase assays. The PKCalpha C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCalpha immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCalpha immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCalpha is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCalpha function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.  相似文献   

4.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

5.
Protein kinase C (PKC) isoforms have been reported to be targeted to the Golgi complex via their C1 domains. We have shown recently that the regulatory domain of PKC induces apoptosis in neuroblastoma cells and that this effect is correlated to Golgi localization via the C1b domain. This study was designed to identify specific residues in the C1 domains that mediate Golgi localization. We demonstrate that the isolated C1b domains from PKCalpha, -delta, -epsilon, -eta, and - are targeted to the Golgi complex, whereas the corresponding C1a domains localize throughout the cell. Sequence alignment showed that amino acid residues corresponding to Glu-246 and Met-267 in PKC are conserved among C1b but absent from C1a domains. Mutation of Met-267, but not of Glu-246, to glycine abolished the Golgi localization of the isolated C1b domain and the regulatory domain of PKC. The mutated PKC regulatory domain constructs lacking Golgi localization were unable to induce apoptosis, suggesting a direct correlation between Golgi localization and apoptotic activity of PKC regulatory domain. Mutation of analogous residues in the C1b domain of PKCepsilon abrogated its Golgi localization, demonstrating that this effect is not restricted to one PKC isoform. The abolished Golgi localization did not affect neurite induction by PKCepsilon. However, the PKCepsilon mutant did not relocate to the Golgi network in response to ceramide and ceramide did not suppress the neurite-inducing capacity of the protein. Thus, the specific mutations in the C1b domain influence both the localization and function of full-length PKCepsilon.  相似文献   

6.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   

7.
PRK1 is a lipid- and Rho GTPase-activated serine/threonine protein kinase implicated in the regulation of receptor trafficking, cytoskeletal dynamics and tumorigenesis. Although Rho binding has been mapped to the HR1 region in the regulatory domain of PRK1, the mechanism involved in the control of PRK1 activation following Rho binding is poorly understood. We now provide the first evidence that the very C-terminus beyond the hydrophobic motif in PRK1 is essential for the activation of this kinase by RhoA. Deletion of the HR1 region did not completely abolish the binding of PRK1-DeltaHR1 to GTPgammaS-RhoA nor the activation of this mutant by GTPgammaS-RhoA in vitro. In contrast, removing of the last six amino acid residues from the C-terminus of PRK1 or truncating of a single C-terminal residue from PRK1-DeltaHR1 completely abrogated the activation of these mutants by RhoA both in vitro and in vivo. The critical dependence of the very C-terminus of PRK1 on the signaling downstream of RhoA was further demonstrated by the failure of the PRK1 mutant lacking its six C-terminal residues to augment lisophosphatidic acid-elicited neurite retraction in neuronal cells. Thus, we show that the HR1 region is necessary but not sufficient in eliciting a full activation of PRK1 upon binding of RhoA. Instead, such activation is controlled by the very C-terminus of PRK1. Our results also suggest that the very C-terminus of PRK1, which is the least conserved among members of the protein kinase C superfamily, is a potential drug target for pharmacological intervention of RhoA-mediated signaling pathways.  相似文献   

8.
Protein kinase C contains two phorbol ester binding domains   总被引:10,自引:0,他引:10  
A series of deletion and truncation mutants of protein kinase C (PKC) were expressed in the baculovirus-insect cell expression system in order to elucidate the ability of various domains of the enzyme to bind phorbol dibutyrate (PDBu). A PKC truncation mutant consisting of only the catalytic domain of the enzyme did not bind [3H]PDBu, whereas a PKC truncation mutant consisting of the regulatory domain (containing the tandem cysteine-rich putative zinc finger regions) bound [3H]PDBu. Deletion of the second conserved region (C2) of PKC did not abolish [3H]PDBu binding, whereas a deletion of the first conserved region (C1) of PKC, containing the two cysteine-rich sequences, completely abolished [3H]PDBu binding. Additional truncation and deletion mutants helped to localize the region necessary for [3H]PDBu binding; all PKC mutants that contained either one of the cysteine-rich zinc finger-like regions possessed phorbol ester binding activity. Scatchard analyses of these mutants indicated that each bound [3H]PDBu with equivalent affinity (21-41 nM); approximately 10-20-fold less than the native enzyme. In addition, a peptide of 146 amino acid residues from the first cysteine-rich region, as well as a peptide of only 86 amino acids residues from the second cysteine-rich region, both bound [3H]PDBu with high affinity (31 +/- 4 and 59 +/- 13 nM, respectively). These data establish that PKC contains two phorbol ester binding domains which may function in its regulation.  相似文献   

9.
rap1GAP is a GTPase-activating protein that specifically stimulates the GTP hydrolytic rate of p21rap1. We have defined the catalytic domain of rap1GAP by constructing a series of cDNAs coding for mutant proteins progressively deleted at the amino- and carboxy-terminal ends. Analysis of the purified mutant proteins shows that of 663 amino acid residues, only amino acids 75 to 416 are necessary for full GAP activity. Further truncation at the amino terminus resulted in complete loss of catalytic activity, whereas removal of additional carboxy-terminal residues dramatically accelerated the degradation of the protein in vivo. The catalytic domain we have defined excludes the region of rap1GAP which undergoes phosphorylation on serine residues. We have further defined this phosphoacceptor region of rap1GAP by introducing point mutations at specific serine residues and comparing the phosphopeptide maps of the mutant proteins. Two of the sites of phosphorylation by cyclic AMP (cAMP)-dependent kinase were localized to serine residues 490 and 499, and one site of phosphorylation by p34cdc2 was localized to serine 484. In vivo, rap1GAP undergoes phosphorylation at four distinct sites, two of which appear to be identical to the sites phosphorylated by cAMP-dependent kinase in vitro.  相似文献   

10.
The identification of phosphoinositide-dependent kinase-1 (PDK-1) as an activating kinase for members of the AGC family of kinases has led to its implication as the activating kinase for cAMP-dependent protein kinase. It has been established in vitro that PDK-1 can phosphorylate the catalytic (C) subunit (), but the Escherichia coli-expressed C-subunit undergoes autophosphorylation. To assess which of these mechanisms occurs in mammalian cells, a set of mutations was engineered flanking the site of PDK-1 phosphorylation, Thr-197, on the activation segment of the C-subunit. Two distinct requirements appeared for autophosphorylation and phosphorylation by PDK-1. Autophosphorylation was disrupted by mutations that compromised activity (Thr-201 and Gly-200) or altered substrate recognition (Arg-194). Conversely, only residues peripheral to Thr-197 altered PDK-1 phosphorylation, including a potential hydrophobic PDK-1 binding site at the C terminus. To address the in vivo requirements for phosphorylation, select mutant proteins were transfected into COS-7 cells, and their phosphorylation state was assessed with phospho-specific antibodies. The phosphorylation pattern of these mutant proteins indicates that autophosphorylation is not the maturation mechanism in the eukaryotic cell; instead, a heterologous kinase with properties resembling the in vitro characteristics of PDK-1 is responsible for in vivo phosphorylation of PKA.  相似文献   

11.
Background: Phosphorylation critically regulates the catalytic function of most members of the protein kinase superfamily. One such member, protein kinase C (PKC), contains two phosphorylation switches: a site on the activation loop that is phosphorylated by another kinase, and two autophosphorylation sites in the carboxyl terminus. For conventional PKC isozymes, the mature enzyme, which is present in the detergent-soluble fraction of cells, is quantitatively phosphorylated at the carboxy-terminal sites but only partially phosphorylated on the activation loop.Results: This study identifies the recently discovered phosphoinositide-dependent kinase 1, PDK-1, as a regulator of the activation loop of conventional PKC isozymes. First, studies in vivo revealed that PDK-1 controls the amount of mature (carboxy-terminally phosphorylated) conventional PKC. More specifically, co-expression of the conventional PKC isoform PKC βII with a catalytically inactive form of PDK-1 in COS-7 cells resulted in both the accumulation of non-phosphorylated PKC and a corresponding decrease in PKC activity. Second, studies in vitro using purified proteins established that PDK-1 specifically phosphorylates the activation loop of PKC α and βII. The phosphorylation of the mature PKC enzyme did not modulate its basal activity or its maximal cofactor-dependent activity. Rather, the phosphorylation of non-phosphorylated enzyme by PDK-1 triggered carboxy-terminal phosphorylation of PKC, thus providing the first step in the generation of catalytically competent (mature) enzyme.Conclusions: We have shown that PDK-1 controls the phosphorylation of conventional PKC isozymes in vivo. Studies performed in vitro establish that PDK-1 directly phosphorylates PKC on the activation loop, thereby allowing carboxy-terminal phosphorylation of PKC. These data suggest that phosphorylation of the activation loop by PDK-1 provides the first step in the processing of conventional PKC isozymes by phosphorylation.  相似文献   

12.
Members of the protein kinase C (PKC) family are characterized by an NH2-terminal regulatory domain containing binding sites for calcium, phosphatidylserine, and diacylglycerol (or tumor-promoting phorbol esters), a small central hinge region and a COOH-terminal catalytic domain. We have constructed fusion proteins in which the regulatory domain of PKC alpha was removed and replaced by a 19-amino acid leader sequence containing a myristoylation consensus or by the same sequence in which the amino-terminal glycine was changed to alanine to prevent myristoylation. The goal was to generate constitutively active mutants of PKC that were either membrane bound, due to their myristoylation, or cytoplasmic. Western blotting of fractions from COS cells transfected with plasmids encoding wild-type and mutant proteins revealed that PKC alpha resided entirely in a Triton X-100 soluble (TS) fraction, whereas both the myristoylated and nonmyristoylated mutants were associated primarily with the nuclear envelope fraction. A similar mutant that lacked the 19 amino acid leader sequence was also found almost entirely in the nuclear envelope, as was a truncation mutant containing only the regulatory domain, hinge region, and a small portion of the catalytic domain. However, an additional truncation mutant consisting of only the regulatory domain plus the first one-third of the hinge region was almost entirely in the TS fraction. A nonmyristoylated fusion protein containing only the catalytic domain was also found in the nuclear envelope. Immunostaining of cells transfected with these constructs revealed that both the myristoylated and nonmyristoylated mutants were localized in nuclei, whereas wild-type PKC alpha was primarily cytoplasmic and perinuclear. Phorbol dibutyrate treatment of PKC alpha-transfected cells resulted in increased perinuclear and nuclear staining. The results are consistent with a model in which activation of PKC, by phorbol esters or by deletion of the regulatory domain, exposes regions in the hinge and catalytic domains that interact with a PKC "receptor" present in the nuclear envelope, and may explain the ability of wild-type PKC to be translocated to the nucleus under certain conditions.  相似文献   

13.
We have shown previously that protein kinase C (PKC) epsilon can induce neurite outgrowth independently of its catalytic activity via a region encompassing its C1 domains. In this study we aimed at identifying specific amino acids in this region crucial for induction of neurite outgrowth. Deletion studies demonstrated that only 4 amino acids N-terminal and 20 residues C-terminal of the C1 domains are necessary for neurite induction. The corresponding regions from all other novel isoforms but not from PKCalpha were also neuritogenic. Further mutation studies indicated that amino acids immediately N-terminal of the C1a domain are important for plasma membrane localization and thereby for neurite induction. Addition of phorbol ester made this construct neurite-inducing. However, mutation of amino acids flanking the C1b domain reduced the neurite-inducing capacity even in the presence of phorbol esters. Sequence alignment highlighted an 8-amino acid-long sequence N-terminal of the C1b domain that is conserved in all novel PKC isoforms. Specifically, we found that mutations of either Phe-237, Val-239, or Met-241 in PKCepsilon completely abolished the neurite-inducing capacity of PKCepsilon C1 domains. Phorbol ester treatment could not restore neurite induction but led to a plasma membrane translocation. Furthermore, if 12 amino acids were included N-terminal of the C1b domain, the C1a domain was dispensable for neurite induction. In conclusion, we have identified a highly conserved sequence N-terminal of the C1b domain that is crucial for neurite induction by PKCepsilon, indicating that this motif may be critical for some morphological effects of PKC.  相似文献   

14.
Stimulation of intestinal fructose absorption by phorbol 12-myristate 13-acetate (PMA) results from rapid insertion of GLUT2 into the brush-border membrane and correlates with protein kinase C (PKC) betaII activation. We have therefore investigated the role of phosphatidylinositol 3 (PI3)-kinase and mammalian target of rapamycin in the regulation of fructose absorption by PKC betaII phosphorylation. In isolated jejunal loops, stimulation of fructose absorption by PMA was inhibited by preperfusion with wortmannin or rapamycin, which blocked GLUT2 activation and insertion into the brush-border membrane. Antibodies to the last 18 and last 10 residues of the C-terminal region of PKC betaII recognized several species differentially in Western blots. Extensive cleavage of native enzyme (80/78 kDa) to a catalytic domain product of 49 kDa occurred. PMA and sugars provoked turnover and degradation of PKC betaII by dephosphorylation to a 42-kDa species, which was converted to polyubiquitylated species detected at 180 and 250+ kDa. PMA increased the level of the PKC betaII 49-kDa species, which correlates with the GLUT2 level; wortmannin and rapamycin blocked these effects of PMA. Rapamycin and wortmannin inhibited PKC betaII turnover. PI3-kinase, PDK-1, and protein kinase B were present in the brush-border membrane, where their levels were increased by PMA and blocked by the inhibitors. We conclude that GLUT2-mediated fructose absorption is regulated through PI3-kinase and mammalian target of rapamycin-dependent pathways, which control phosphorylation of PKC betaII and its substrate-induced turnover and ubiquitin-dependent degradation. These findings suggest possible mechanisms for short term control of intestinal sugar absorption by insulin and amino acids.  相似文献   

15.
The protein kinase C (PKC) family has been implicated in the regulation of apoptosis. However, the contribution of individual PKC isozymes to this process is not well understood. We reported amplification of the chromosome 2p21 locus in 28% of thyroid neoplasms, and in the WRO thyroid carcinoma cell line. By positional cloning we identified a rearrangement and amplification of the PKCepsilon gene, that maps to 2p21, in WRO cells. This resulted in the overexpression of a chimeric/truncated PKCepsilon (Tr-PKCepsilon) mRNA, coding for N-terminal amino acids 1-116 of the isozyme fused to an unrelated sequence. Expression of the Tr-PKCepsilon protein in PCCL3 cells inhibited activation-induced translocation of endogenous PKCepsilon, but its kinase activity was unaffected, consistent with a dominant negative effect of the mutant protein on activation-induced translocation of wild-type PKCepsilon and/or displacement of the isozyme to an aberrant subcellular location. Cell lines expressing Tr-PKCepsilon grew to a higher saturation density than controls. Moreover, cells expressing Tr-PKCepsilon were resistant to apoptosis, which was associated with higher Bcl-2 levels, a marked impairment in p53 stabilization, and dampened expression of Bax. These findings point to a role for PKCepsilon in apoptosis-signaling pathways in thyroid cells, and indicate that a naturally occurring PKCepsilon mutant that functions as a dominant negative can block cell death triggered by a variety of stimuli.  相似文献   

16.
Chen H  Nystrom FH  Dong LQ  Li Y  Song S  Liu F  Quon MJ 《Biochemistry》2001,40(39):11851-11859
Phosphoinositide-dependent kinase-1 (PDK-1) is a serine-threonine kinase downstream from PI 3-kinase that phosphorylates and activates other important kinases such as Akt that are essential for cell survival and metabolism. Previous reports have suggested that PDK-1 has constitutive catalytic activity that is not regulated by stimulation of cells with growth factors. We now show that insulin stimulation of NIH-3T3(IR) cells or rat adipose cells may significantly increase the intrinsic catalytic activity of PDK-1. Insulin treatment of NIH-3T3(IR) fibroblasts overexpressing PDK-1 increased both phosphorylation of recombinant PDK-1 in intact cells and PDK-1 kinase activity in an immune-complex kinase assay. Insulin stimulation of rat adipose cells also increased catalytic activity of endogenous PDK-1 immunoprecipitated from the cells. Both insulin-stimulated phosphorylation and activity of PDK-1 were inhibited by wortmannin and reversed by treatment with the phosphatase PP-2A. A mutant PDK-1 with a disrupted PH domain (W538L) did not undergo phosphorylation or demonstrate increased kinase activity in response to insulin stimulation. Similarly, a PDK-1 phosphorylation site point mutant (S244A) had no increase in kinase activity in response to insulin stimulation. Thus, the insulin-stimulated increase in PDK-1 catalytic activity may involve PI 3-kinase- and phosphorylation-dependent mechanisms. We conclude that the basal constitutive catalytic activity of PDK-1 in NIH-3T3(IR) cells and rat adipose cells can be significantly increased upon insulin stimulation.  相似文献   

17.
We constructed mutant protein kinase C (PKC) cDNAs which expressed PKC activity in vivo in the absence of phorbol ester activation. A hybrid PKC gene, PKAC, was constructed by substituting the coding region for the N-terminal 253 amino acids of PKC alpha with the N-terminal 17 amino acids of the cyclic AMP-dependent protein kinase catalytic subunit (PKA). A truncated PKC gene, delta PKC beta, lacking the coding region for amino acid positions 6 to 159 of PKC beta was also constructed. These mutant kinase genes expressed under the control of the SR alpha promoter activated the c-fos gene enhancer in Jurkat cells and initiated maturation of Xenopus laevis oocytes. Phorbol ester binding activity was absent in both constructs but was preserved in another hybrid gene, PKCA, which was composed of the coding region for 1 to 253 amino acids of PKC alpha at the N-terminal side and the coding region for 18 to 350 amino acids of PKA at the C-terminal side. These results indicate that elimination of the regulatory domain of PKC produces constitutively active PKC that can bypass activation by the phorbol ester. delta PKC beta, in synergy with a calcium ionophore, was capable of activating the interleukin 2 promoter, indicating that cooperation of PKC-dependent and calcium-dependent pathways is necessary for activation of the interleukin 2 gene.  相似文献   

18.
Although estrogens are neuroprotective in a variety of neuroprotection models, the precise underlying mechanisms are currently not well understood. Here, we examined the role of protein kinase C (PKC) in mediating estrogen-induced neuroprotection in the HT-22 immortalized hippocampal cell line. The neuroprotection model utilized calcein fluorescence to quantitate cell viability following glutamate insults. 17beta-Estradiol (betaE2) protected HT-22 cells when treatment was initiated before or after the glutamate insult. The inhibition of PKC by bis-indolylmaleimide mimicked and enhanced betaE2-induced neuroprotection. In contrast, the inhibition of specific PKC isozymes (alpha and beta) by Go6976, inhibition of 1-phosphatidylinositol 3 kinase by wortmannin, or inhibition of protein kinase A by H-89, did not alter cell viability, suggesting a specific involvement of PKC in an isozyme-dependent manner. We further examined whether estrogen interacts with PKC in a PKC isozyme-specific manner. Protein levels and activity of PKC isozymes (alpha, delta, epsilon, and zeta) were assessed by western blot analysis and radiolabeled phosphorylation assays respectively. Among the isozymes tested, betaE2 altered only PKCepsilon; it reduced the activity and membrane translocation of PKCepsilon in a manner that correlated with its protection against glutamate toxicity. Furthermore, betaE2 reversed the increased activity of membrane PKCepsilon induced by glutamate. These data suggest that the neuroprotective effects of estrogens are mediated in part by inhibition of PKCepsilon activity and membrane translocation.  相似文献   

19.
M Way  B Pope  J Gooch  M Hawkins    A G Weeds 《The EMBO journal》1990,9(12):4103-4109
The actin severing and capping protein gelsolin contains three distinct actin binding sites. The smallest actin binding domain of approximately 15,000 Mr was originally obtained by limited proteolysis and it corresponds to the first of six repeating segments contained in the gelsolin sequence. We have expressed this domain (here termed segment 1 or N150 to define its amino acid length) in Escherichia coli, together with a series of smaller mutants truncated at either N- or C-terminal ends, in an attempt to localize residues critical of actin binding. Limited truncation of segment 1 by 11 residues at its N-terminal end has no observable effect on actin binding, but on removal of a further eight residues, actin binding is totally eliminated. Although this loss of actin binding may reflect ablation of critical residues, we cannot rule out the possibility that removal of these residues adversely affects the folding of the polypeptide chain during renaturation. Truncation at the C-terminus of segment 1 has a progressive effect on actin binding. Unlike intact segment 1, which shows no calcium sensitivity of actin binding within the resolution of our assays, a mutant with 19 residues deleted from its C-terminus shows unchanged affinity for actin in the presence of calcium, but approximately 100-fold weaker binding in its absence. Removal of an additional five residues from the C-terminus produces a mutant that binds actin only in calcium. Further limited truncation results in progressively weaker calcium dependent binding and all binding is eliminated when a total of 29 residues has been removed. Although none of the expressed proteins on their own binds calcium, 45Ca is trapped in the complexes, including the complex between actin and segment 1 itself. These results highlight a region close to the C-terminus of segment 1 that is essential for actin binding and demonstrate that calcium plays an important role in the high affinity actin binding by this domain of gelsolin.  相似文献   

20.
SNAT (sodium-coupled neutral amino acid transporter) 2 belongs to the SLC38 (solute carrier 38) family of solute transporters. Transport of one amino acid molecule into the cell is driven by the co-transport of one Na(+) ion. The functional significance of the C-terminus of SNAT2, which is predicted to be located in the extracellular space, is currently unknown. In the present paper, we removed 13 amino acid residues from the SNAT2 C-terminus and studied the effect of this deletion on transporter function. The truncation abolished amino acid transport currents at negative membrane potentials (<0 mV), as well as substrate uptake. However, transport currents were observed at positive membrane potentials demonstrating that transport was accelerated while the driving force decreased. Membrane expression levels were normal in the truncated transporter. SNAT2(Del C-ter) (13 residues deleted from the C-terminus) showed 3-fold higher apparent affinity for alanine, and 2-fold higher Na(+) affinity compared with wild-type SNAT2, suggesting that the C-terminus is not required for high-affinity substrate and Na(+) interaction with SNAT2. The pH sensitivity of amino acid transport was retained partially after the truncation. In contrast with the truncation after TM (transmembrane domain) 11, the deletion of TM11 resulted in an inactive transporter, most probably due to a defect in cell surface expression. Taken together, the results demonstrate that the C-terminal domain of SNAT2 is an important voltage regulator that is required for a normal amino acid translocation process at physiological membrane potentials. However, the C-terminus appears not to be involved in the regulation of membrane expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号