首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have investigated epithelial cell proliferation and the rate of glandular recovery of the ventral prostate (VP) and seminal vesicle (SV) promoted by testosterone replacement (TR) in castration-induced regressed glands. Adult male Wistar rats were castrated and, after 21 days, they were treated with testosterone propionate (4 mg/kg/day). Intact (CT) and castrated rats without TR (CS) were also analysed. VP and SV were processed for histochemistry, morphometric-stereological analysis and immunocytochemistry to determine the PCNA index (PI). After 10 days of TR, the VP weight reached approximately 72% of the CT values, while the SV weight exceeded approximately 17% of the CT values. By the third day of TR, VP and SV presented a mean PI of 34% and 94% for distal region and 14% and 22% for proximal region, respectively. SV also had more luminal cells PCNA-positive than VP, mainly in the distal region. The PI values fell on days 5, 7 and 10, but were still higher than CT. These findings indicate that epithelial cells from involuted SV are more responsive to TR than those from VP when stimulated to proliferate and replace the luminal cell population, suggesting a different mechanism regulating cell proliferation in response to androgenic stimuli.  相似文献   

2.
FGF-10 plays an essential role in the growth of the fetal prostate   总被引:4,自引:0,他引:4  
Induction and branching morphogenesis of the prostate are dependent on androgens, which act via the mesenchyme to induce prostatic epithelial development. One mechanism by which the mesenchyme may regulate the epithelium is through secreted growth factors such as FGF-10. We have examined the male reproductive tract of FGF-10(-/-) mice, and at birth, most of the male secondary sex organs were absent or atrophic, including the prostate, seminal vesicle, bulbourethral gland, and caudal ductus deferens. Rudimentary prostatic buds were occasionally observed in the prostatic anlagen, the urogenital sinus (UGS) of FGF-10(-/-) mice. FGF-10(-/-) testes produced sufficient androgens to induce prostatic development in control UGS organ cultures. Prostatic rudiments from FGF-10(-/-) mice transplanted into intact male hosts grew very little, but showed some signs of prostatic differentiation. In cultures of UGS, the FGF-10 null phenotype was partially reversed by the addition of FGF-10 and testosterone, resulting in the formation of prostatic buds. FGF-10 alone did not stimulate prostatic bud formation in control or FGF-10(-/-) UGS. Thus, FGF-10 appears to act as a growth factor which is required for development of the prostate and several other accessory sex organs.  相似文献   

3.
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.  相似文献   

4.
Sonic hedgehog regulates prostatic growth and epithelial differentiation   总被引:7,自引:0,他引:7  
The Sonic hedgehog (SHH)-signalling pathway mediates epithelial-mesenchymal interactions in several tissues during development and disease, and we have investigated its role in rat ventral prostate (VP) development. We have demonstrated that Shh and Ptc expression correlates with growth and development of the prostate and that their expression is not regulated by androgens in the VP. Prostatic budding was induced in response to testosterone in Shh null mouse urogenital sinus (UGS) explants grown in vitro and in rat UGS explants cultured with cyclopamine, suggesting that SHH-signalling is not critical for prostatic induction. SHH-signalling was disrupted at later stages of VP development (in vitro), resulting in a reduction in organ size, an increase in ductal tip number, and reduced proliferation of ductal tip epithelia. The addition of recombinant SHH to VPs grown in vitro caused a decrease in ductal tip number and expansion of the mesenchyme. In the presence of testosterone, inhibition of SHH-signalling accelerated the canalisation of prostatic epithelial ducts and resulted in ducts that showed morphological similarities to cribiform prostatic intraepithelial neoplasia (PIN). The epithelia of these ducts also demonstrated precocious and aberrant differentiation, when examined by immunohistochemistry for p63 and cytokeratin 14. In conclusion, we show that SHH-signalling is not essential for prostatic induction, but is important for prostatic growth, branching, and proliferation, and that androgen-stimulated growth in the absence of signalling from the SHH pathway results in aberrant epithelial differentiation.  相似文献   

5.
Epithelial-mesenchymal interactions play an important role in the development of many different organs and tissues. The secretory glands of the male reproductive system, including the prostate and seminal vesicles, are derived from epithelial precursors. Signals from the underlying mesenchyme are required for normal growth, branching, and differentiation of the seminal vesicle epithelium. Here, we show that a member of the BMP family, Gdf7, is required for normal seminal vesicle development. Expression and tissue recombination experiments suggest that Gdf7 is a mesenchymal signal that acts in a paracrine fashion to control the differentiation of the seminal vesicle epithelium.  相似文献   

6.
7.
8.
Autologous down-regulation of androgen receptor messenger ribonucleic acid   总被引:6,自引:0,他引:6  
Autoregulation of androgen receptor (AR) mRNA was investigated using Northern blot analysis with AR cDNA fragments as probes. The amount of AR mRNA increased 2- to 10-fold with androgen withdrawal and decreased below control levels after androgen stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, kidney, and brain, and in a human prostate cancer cell line, LNCaP. In rat ventral prostate, AR mRNA increased 2- to 3-fold within 24 h after castration and remained elevated for 4 days. Treatment with testosterone propionate beginning 24 h after castration reduced ventral prostate AR mRNA 4-fold within 8 h of androgen replacement. Administration of estradiol 24 h after castration had no significant effect on prostatic AR mRNA. Androgens, including testosterone and the synthetic androgen methyltrienolone (R1881), or the antiandrogen cyproterone acetate down-regulated AR mRNA in vitro in LNCaP cells, whereas estradiol was without effect. Administration of testosterone propionate to rats with androgen insensitivity did not decrease AR mRNA. Down-regulation of AR mRNA by androgen is therefore a receptor-mediated process which occurs in vivo in rat tissues that differ in androgen responsiveness and in cultured human prostate cells.  相似文献   

9.
Morphogenesis of the lung is regulated by reciprocal signaling between epithelium and mesenchyme. In previous studies, we have shown that FGF9 signals are essential for lung mesenchyme development. Using Fgf9 loss-of-function and inducible gain-of-function mouse models, we show that lung mesenchyme can be divided into two distinct regions: the sub-mesothelial and sub-epithelial compartments, which proliferate in response to unique growth factor signals. Fibroblast growth factor (FGF) 9 signals from the mesothelium (the future pleura) to sub-mesothelial mesenchyme through both FGF receptor (FGFR) 1 and FGFR2 to induce proliferation. FGF9 also signals from the epithelium to the sub-epithelial mesenchyme to maintain SHH signaling, which regulates cell proliferation, survival and the expression of mesenchymal to epithelial signals. We further show that FGF9 represses peribronchiolar smooth muscle differentiation and stimulates vascular development in vivo. We propose a model in which FGF9 and SHH signals cooperate to regulate mesenchymal proliferation in distinct submesothelial and subepithelial regions. These data provide a molecular mechanism by which mesothelial and epithelial FGF9 directs lung development by regulating mesenchymal growth, and the pattern and expression levels of mesenchymal growth factors that signal back to the epithelium.  相似文献   

10.
11.
12.
Co-expression of cytokeratin (CK) pairs has been found to be associated with specific epithelial cell types whose expressions are developmentally regulated. In the prostate, CK 8 and 18 have been identified as luminal cell-specific markers, and CK 5 and 15 have been identified as basal cell-specific markers. In this study, we report the cloning and sequencing of a full-length CK 8 cDNA (1.9 kilobases) from a rat ventral prostate (VP) cDNA library. Although the open reading frame shares 90% homology with mouse CK 8 sequences, nucleotide comparison revealed that rat CK 8 cDNA comprises a species-specific sequence on both 5' and 3' ends. The steady-state levels of CK 8 mRNA were elevated in VP, seminal vesicle (SV), and liver of a castrated rat but not in the other organs such as the coagulating gland, bladder, and thymus. Unlike the other androgen-repressed genes, elevated CK 8 mRNA levels persisted even after the glandular involution was completed, indicating that CK 8 is a new class of androgen-repressed gene. The regression of CK 8 expression may be androgen receptor-mediated, since androgen but not estrogen administration to castrated hosts repressed the CK 8 mRNA levels, and this effect can be antagonized by the simultaneous administration of an antiandrogen (4-hydroxyflutamide). Immunohistochemical staining of prostatic tissues reveals that the CK 8 filamentous structure is shifted reversibly from a uniform distribution to a predominantly basal surface upon androgen deprivation. We noted that the steady-state levels of CK 8 protein remain rather constant throughout the various hormonal treatment, and the steady-state levels of CK 8 mRNA and the rate of CK 8 protein synthesis are consistently elevated. These results suggest that the turnover rate of CK 8 protein may be elevated in the prostatic epithelium from the castrated host. Similarly, the steady-state levels of CK 15 and 18 mRNA in VP and SV are also repressed in an androgen-dependent manner. These data, taken together, indicate that pairwise control of luminal (and possibly basal) specific cytokeratin gene expression remains intact in both VP and SV tissues and that the levels of CK mRNAs expression are negatively regulated by androgen.  相似文献   

13.
We have examined the role that smooth muscle plays during prostatic organogenesis and propose that differentiation of a smooth muscle layer regulates prostatic induction by controlling mesenchymal/epithelial interactions. During development of the rat reproductive tract, an area of condensed mesenchyme involved in prostatic organogenesis is formed. This mesenchyme (the ventral mesenchymal pad, VMP) is found in both males and females, yet only males develop a prostate. We demonstrate that a layer of smooth muscle differentiates between the VMP and the urethral epithelium, and that there is a sexually dimorphic difference in the development of this layer. Serial section reconstruction showed that the layer formed at approximately embryonic day 20.5 in females, but did not form in males. In cultures of female reproductive tracts, testosterone was able to regulate the thickness of this layer resulting in a 2.4-fold reduction in thickness. We observed that prostatic buds were present in some female reproductive tracts, and determined that testosterone was able to stimulate prostatic organogenesis, depending upon the bud position relative to the smooth muscle layer. In vitro recombination experiments demonstrated that direct contact with the VMP led to the induction of very few epithelial buds, and that androgens dramatically increased bud development. Taken together, our data suggest that differentiation of a smooth muscle layer regulates signalling between mesenchyme and epithelium, and comprises part of the mechanism regulating prostatic induction.  相似文献   

14.
1. Castration of adult rats markedly decreases the amounts of polyamines (putrescine, spermidine and spermine) and of RNA and DNA in the ventral prostate and the seminal vesicle. 2. Daily injections of testosterone propionate to rats castrated 7 days previously increase polyamine and nucleic acid contents more rapidly in the seminal vesicle than in the ventral prostate. 3. After 7 days of androgen treatment, polyamine and nucleic acid contents of the seminal vesicle are significantly higher than those of intact animals. Nucleic acid, but not polyamine, contents return to normal values during the next 4 days of continued treatment. In the prostate, androgen treatment increases polyamine and nucleic acid contents to, but not above, normal values. 4. Repeated doses of alpha-difluoromethylornithine, a potent enzyme-activated irreversible inhibitor of ornithine decarboxylase, totally blocked the testosterone-induced increase of putrescine and spermidine in the ventral prostate and of putrescine in the seminal vesicle. They slowed significantly the accumulation of spermine in the ventral prostate and of spermidine in the seminal vesicle. alpha-Difluoromethylornithine also retarded the testosterone-induced accumulation of RNA in the ventral prostate. However, no clear correlation was apparent between accumulation of polyamines and of nucleic acids in the two organs. 5. alpha-Difluoromethylornithine markedly slows the testosterone-induced weight gain of the prostate, but not of the seminal vesicle. Cytological studies suggest that this effect on the prostate is due to inhibition of the androgen-induced restoration of the secretion content of prostatic acini.  相似文献   

15.
J S Mills  M Needham    M G Parker 《The EMBO journal》1987,6(12):3711-3717
A full length cDNA clone encoding a mouse prostatic secretory glycoprotein (p12) whose synthesis is dependent upon testicular androgens has been cloned and characterized. The predicted amino acid sequence of p12 shares extensive homology with several members of the Kazal family of secretory protease inhibitors, in particular the pancreatic secretory trypsin inhibitors. In agreement with sequence data, prostatic secretory p12, purified from mouse ventral prostate secretion, exhibits anti-trypsin activity. Steady-state levels of protease inhibitor mRNA in ventral prostate are reduced from approximately 0.06% in normal mice to undetectable after androgen withdrawal but are inducible within 4 h by re-administration of testosterone. Androgen-dependent expression of the secretory protease inhibitor mRNA was also observed in coagulating gland and seminal vesicle. In seminal vesicle, a tissue of different embryonic origin to the prostate, the kinetics of secretory protease inhibitor mRNA loss after castration are not as rapid as in the ventral prostate and coagulating gland. Low-level androgen independent expression was also observed in the pancreas. There appears to be a single gene for this secretory protease inhibitor and yet expression is markedly stimulated by testosterone in the sex accessory tissues and unaffected by this hormone in the pancreas.  相似文献   

16.
The fibroblast growth factor (FGF) family consists of 22 members and regulates a broad spectrum of biological activities by activating diverse isotypes of FGF receptor tyrosine kinases (FGFRs). Among the FGFs, FGF7 and FGF10 have been implicated in the regulation of prostate development and prostate tissue homeostasis by signaling through the FGFR2 isoform. Using conditional gene ablation with the Cre-LoxP system in mice, we demonstrate a tissue-specific requirement for FGFR2 in urogenital epithelial cells--the precursors of prostatic epithelial cells--for prostatic branching morphogenesis and prostatic growth. Most Fgfr2 conditional null (Fgfr2(cn)) embryos developed only two dorsal prostatic (dp) and two lateral prostatic (lp) lobes. This contrasts to wild-type prostate, which has two anterior prostatic (ap), two dp, two lp and two ventral prostatic (vp) lobes. Unlike wild-type prostates, which are composed of well developed epithelial ductal networks, the Fgfr2(cn) prostates, despite retaining a compartmented tissue structure, exhibited a primitive epithelial architecture. Moreover, although Fgfr2(cn) prostates continued to produce secretory proteins in an androgen-dependent manner, they responded poorly to androgen with respect to tissue homeostasis. The results demonstrate that FGFR2 is important for prostate organogenesis and for the prostate to develop into a strictly androgen-dependent organ with respect to tissue homeostasis but not to the secretory function, implying that androgens may regulate tissue homeostasis and tissue function differently. Therefore, Fgfr2(cn) prostates provide a useful animal model for scrutinizing molecular mechanisms by which androgens regulate prostate growth, homeostasis and function, and may yield clues as to how advanced-tumor prostate cells escape strict androgen regulations.  相似文献   

17.
18.
Fibroblast growth factor (FGF) signaling mediates reciprocal mesenchymal-epithelial cell interactions in the developing mouse lung and limb. In the gastrointestinal (GI) tract, FGF10 is expressed in the cecal mesenchyme and signals to an epithelial splice form of FGF receptor (FGFR) 2 to regulate epithelial budding. Here, we identify FGF9 as a reciprocal epithelial-mesenchymal signal required for cecal morphogenesis. Fgf9 null (Fgf9(-/-)) mouse embryos have agenesis of the embryonic cecum, lacking both mesenchymal expansion and an epithelial bud. In the cecal region of Fgf9(-/-) embryos, mesenchymal expression of Fgf10 and Bmp4 is notably absent, whereas the expression of epithelial markers, such as sonic hedgehog, is not affected. Using epithelial and whole explant cultures, we show that FGF9 signals to mesenchymal FGFRs and that FGF10 signals to epithelial FGFRs. Taken together, these data show that an epithelial FGF9 signal is necessary for the expansion of cecal mesenchyme and the expression of mesenchymal genes that are required for epithelial budding. Thus, these data add to our understanding of FGF-mediated reciprocal epithelial-mesenchymal signaling.  相似文献   

19.
We had previously reported that 6-methylene progesterone, an inhibitor of 5 alpha-reductase, the enzyme which converts testosterone to dihydrotestosterone, markedly inhibited growth of the androgen-dependent Dunning R3327-H rat prostatic tumors. We now find that the progesterone derivatives melengestrol acetate (MGA) and megestrol acetate (MA) inhibit both the androgen-dependent (Dunning R3327-H) and the androgen-independent (Dunning R3327-AT3) prostatic tumors. Growth of the AT3 tumors was suppressed by approximately 53% after 9 days of daily s.c. injections with MGA at 10 mg/kg body weight. MGA also caused a 54% weight reduction of the ventral prostate and a 53% reduction of the seminal vesicles. Adrenal weights were reduced by 42%. A 24-day oral treatment with MGA (at approximately 15-17 mg/(kg.day)) inhibited AT3 tumor growth by 59% and caused a weight reduction in the following tissues: prostate (46%), seminal vesicles (19%), testes (12%), and adrenals (52%). Under the same protocol, MA inhibited AT3 tumor growth by 32% and reduced the weight of the ventral prostate by 49% and the weight of the adrenals by 18%, but had no effect on the seminal vesicles and testes. The extent of the MGA-induced prostatic regression was accompanied by cytological changes similar to those effected by 6-methylene progesterone, i.e., shrinking of the acinar epithelium. The AT3 tumors in MGA-treated rats displayed a limited degree of apoptosis. Atrophy of the adrenal cortex and lowered plasma levels of corticosterone and dihydroepiandrosterone were also observed. A therapeutic role for MGA and MA against androgen-independent prostatic neoplasms in man is forecast by these observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号