首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ghrelin -- a new endogenous growth hormone secretagogue   总被引:1,自引:0,他引:1  
Ghrelin is a new endogenous peptide, discovered in 1999 by Kojima et al., as the result of a search for an endogenous ligand for an orphan receptor of known structure and function. Ghrelin is composed of 28 amino acids and is produced mostly by cells of the stomach, hypothalamus, and hypophysis, but it has also been detected in other tissues. Its discovery is related to the development of a new hypothesis regarding the regulation of growth hormone secretion. It is an antagonist of somatostatin. Ghrelin activates the release of growth hormone from the somatotrophic cells of the hypophysis. It participates in the regulation of energy homeostasis, increases food intake, decreases energy output and exerts a lipogenetic effect. Its metabolic effects do not depend on the GH/IGF-I system, but are mediated by the NPY/Y1 and AGRP receptor system. Ghrelin influences the secretion and motility of the gastrointestinal tract, especially the stomach. The presence of ghrelin and its receptors has also been demonstrated in many other tissues. Its function in these tissues has not yet been studied, thus providing many possibilities for further research.  相似文献   

2.
Our objective is to determine the neuromodulatory role of ghrelin in the brain. To identify neurons that express the ghrelin receptor [GH secretagogue receptor (GHS-R)], we generated GHS-R-IRES-tauGFP mice by gene targeting. Neurons expressing the GHS-R exhibit green fluorescence and are clearly evident in the hypothalamus, hippocampus, cortex, and midbrain. Using immunohistochemistry in combination with green fluorescent protein fluorescence, we identified neurons that coexpress the dopamine receptor subtype 1 (D1R) and GHS-R. The potential physiological relevance of coexpression of these two receptors and the direct effect of ghrelin on dopamine signaling was investigated in vitro. Activation of GHS-R by ghrelin amplifies dopamine/D1R-induced cAMP accumulation. Intriguingly, amplification involves a switch in G protein coupling of the GHS-R from Galpha(11/q) to Galpha(i/o) by a mechanism consistent with agonist-dependent formation of GHS-R/D1R heterodimers. Most importantly, these results indicate that ghrelin has the potential to amplify dopamine signaling selectively in neurons that coexpress D1R and GHS-R.  相似文献   

3.
Chan CB  Leung PK  Wise H  Cheng CH 《FEBS letters》2004,577(1-2):147-153
We have recently cloned the full-length cDNAs of the two growth hormone secretagogue receptor (GHSR) subtypes from a teleost species, the black seabream (Acanthopagrus schlegeli) [Mol. Cell. Endocrinol. 214 (2004) 81], namely sbGHSR-1a and sbGHSR-1b. Functional expression of these two receptor constructs in human embryonic kidney 293 (HEK293) cells indicated that stimulation of sbGHSR-1a by growth hormone secretagogues (GHS) could evoke increases in intracellular Ca2+ concentration ([Ca2+]i), whereas sbGHSR-1b appeared to play an inhibitory role on the signal transduction activity of sbGHSR-1a. In the present study, we have further investigated the signal transduction mechanism of sbGHSR-1a. The peptide GHS GHRP-6 and the non-peptide GHS L163,540 were able to trigger a receptor specific and phospholipase C (PLC)-dependent elevation of [Ca2+]i in HEK293 cells stably expressing sbGHSR-1a. This GHS-induced calcium mobilization was also dependent on protein kinase C activated L-type calcium channel opening. It was found that sbGHSR-1a could function in an agonist-independent manner as it exhibited a high basal activity of inositol phosphate production in the absence of GHS, indicating that the fish receptor is constitutively active. In addition, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) were found to be activated upon stimulation of sbGHSR-1a by GHRP-6. This observation provides direct evidence in the coupling of sbGHSR-1a to ERK1/2 activation. Neither Gs nor Gi proteins are coupled to the receptor, as GHS did not induce cAMP production nor inhibit forskolin-stimulated cAMP accumulation in the sbGHSR-1a bearing cells. Furthermore, the ability of the GHSR antagonist D-Lys3-GHRP-6 to inhibit basal PLC and basal ERK1/2 activity suggests that this compound is an inverse agonist. In summary, the sbGHSR-1a appears to couple through the G(q/11)-mediated pathway to activate PLC, resulting in increased IP3 production and Ca2+ mobilization from both intracellular and extracellular stores. Moreover, sbGHSR-1a may trigger multiple signal transduction cascades to exert its physiological functions.  相似文献   

4.
Adenosine: A partial agonist of the growth hormone secretagogue receptor   总被引:2,自引:0,他引:2  
The growth hormone secretagogue receptor (GHS-R) is involved in the regulation of pulsatile GH release. However, until recently, natural endogenous ligands for the receptor were unknown. We fractionated porcine hypothalamic extracts and assayed fractions for activity on HEK293 cells expressing GHS-R and aequorin. A partial agonist was isolated and identified using microspray tandem mass spectrometry as adenosine. GHS-R activation by adenosine and synthetic adenosine agonists is inhibited by the GHS-R selective antagonists L-765,867, D-Lys(3)-GHRP-6, and by theophylline and XAC. Cross desensitization of the GHS-R occurs with both MK-0677 and adenosine. Ligand binding and site directed mutagenesis studies show that adenosine binds to a binding site that is distinct from the previously characterized MK-0677 and GHRP-6 binding pocket. We propose, that adenosine is a physiologically important endogenous GHS-R ligand and speculate that GHS-R ligands modulate dopamine release from hypothalamic neurons.  相似文献   

5.
6.
The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O‐acyltransferase (GOAT) or membrane‐bound O‐acyltransferase domain‐containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS‐R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS‐R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single‐gene locus in all vertebrate species, and accordingly, a single GHS‐R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS‐R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS‐R isoforms were identified in teleost genomes. This diversification of GHS‐R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS‐R but not the ghrelin gene. The identification of the GHS‐R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure–function relationships of the ghrelin/GHS‐R system.  相似文献   

7.
8.
The structure-activity relationship studies on a series of tetralin carboxamide growth hormone secretagogue receptor (GHS-R) antagonists are discussed. It was found that certain 2-alkoxycarbonylamino substituted tetralin carboxamides are potent, selective, and orally bioavailable GHS-R antagonists.  相似文献   

9.
10.
Ghrelin is a 28-amino acid peptide hormone produced in the stomach. It binds to the growth hormone secretagogue receptor 1a (GHS-R1a), a class A G-protein-coupled receptor. In the present study, we describe the design, synthesis and characterization of a truncated, 18-amino acid analog of ghrelin conjugated to a fluorescent molecule, fluorocein isothiocyanate (FITC), through the addition of a lysine at its C terminus ([Dpr(octanoyl)(3), Lys(fluorescein)(19)]ghrelin(1-19)). Receptor binding affinity of this novel fluorescein-ghrelin(1-18) was similar to that of wild-type ghrelin and a synthetic GHS-R1a ligand, hexarelin. Live cell imaging in CHO/GHS-R1a cells demonstrated cell surface receptor labeling and internalization, and agonist activity of fluorescein-ghrelin(1-18) was confirmed by increased phosphorylation of ERK1/2. We also show that GHS-R1a protein is expressed primarily in the heart when compared to all other organs, suggesting high receptor density in the left ventricle. Finally, we demonstrate that fluorescein-ghrelin(1-18) binds specifically to heart tissue in situ, and its binding is displaced by both wt ghrelin and hexarelin. We have therefore developed a novel imaging probe, fluorescein-ghrelin(1-18), that can be used to image GHS-R1a in situ, for the purposes of investigating mechanisms of receptor trafficking or pharmacological agents that target GHS-R1a.  相似文献   

11.
Immune enhancing effect of a growth hormone secretagogue   总被引:9,自引:0,他引:9  
Growth hormone (GH) has been known to enhance immune responses, whether directly or through the insulin like growth factor-1, induced by GH. Recently a nonpeptidyl small m.w. compound, a GH secretagogue (GHS), was found to induce the production of GH by the pituitary gland. In this study, we examined the effect of GHS in immunological functions of 5- to 6-wk-old and 16- to 24-month-old mice. In young mice, we observed a significant increase in PBLs, but T and B cell-proliferative responses were not consistently enhanced. The old mice, treated with GHS for 3 wk, did not show increases in peripheral lymphocytes, but they exhibited a statistically significant increase in thymic cellularity and differentiation. When inoculated with a transplantable lymphoma cell line, EL4, the treated old mice showed statistically significant resistance to the initiation of tumors and the subsequent metastases. Generation of CTL to EL4 cells was also enhanced in the treated mice, suggesting that GHS has a considerable immune enhancing effect, particularly in the old mice. We have also found that GHS promoted better thymic engraftment in bone marrow transplant of SCID mice. We found more cycling cells in the spleens of treated mice, suggesting that GHS may exert its immune enhancing effect by promoting cell division in lymphoid cells. These observations ascribe to GHS a novel therapy possible for aging, AIDS, and transplant individuals, whose immune functions are compromised.  相似文献   

12.
Jia YD  Chen X  Tang M  Jiang ZY 《生理学报》2008,60(1):149-155
本文在mRNA和蛋白水平观察了功能性ghrelin受体(growth hormone secretagogue receptor type la,GHS-Rla)在大鼠内脏迷走及脊髓传入神经通路中的表达.结果显示:(1)GHS-Rla免疫反应阳性神经元及GHS-Rla mRNA分布于背根神经节(dorsal root ganglion,DRG)及结状神经节(nodose ganglion,NG).(2)应用免疫双标技术观察到DRG和NG中都有一些GHS-Rla免疫反应阳性神经元,同时降钙素基因相关肽(calcitonin gene-related peptide,CGRP)染色呈阳性,显示GHS-Rla和CGRP共存于同一神经元,表明内脏传入神经元存在许多亚核群.(3)应用荧光金(fluorogold)标记的神经逆行追踪技术对从胃投射到DRG和NG的神经元进行免疫组织化学染色,观察到一些表达CGRP的GHS-Rla免疫反应阳性神经元也被荧光金染色.上述实验结果证实了GHS-Rla在迷走神经和脊髓传入神经元中的表达,提示ghrelin参与了胃.脑轴的调节.  相似文献   

13.
The Class A family of guanine nucleotide-binding protein (G protein)-coupled receptors that includes receptors for motilin, ghrelin, and growth hormone secretagogue (GHS) has substantial potential importance as drug targets. Understanding of the molecular basis of hormone binding and receptor activation should provide insights helpful in the development of such drugs. We previously reported that Cys residues and the perimembranous residues in the extracellular loops and amino-terminal tail of the motilin receptor are critical for peptide ligand, motilin, binding and biological activity. In the current work, we focused on the predicted extracellular domains of the human GHS receptor 1a, and identified functionally important residues by using sequential deletions ranging from one to twelve amino acid residues and site-directed replacement mutagenesis approach. Each construct was transiently expressed in COS cells, and characterized for ghrelin- and growth hormone releasing peptide (GHRP)-6-stimulated intracellular calcium responses and ghrelin radioligand binding. Cys residues in positions 116 and 198 in the first and second extracellular loops and the perimembranous Glu187 residue in the second extracellular loop were critical for ghrelin and GHRP-6 biological activity. These results suggest that Cys residues in the extracellular domains in this family of Class A G protein-coupled receptor is likely involved in the highly conserved and functionally important disulfide bond, and that the perimembranous residues contribute peptide ligand binding and signaling.  相似文献   

14.
Autocrine motility factor receptor (AMFR) is a cell surface glycoprotein of molecular weight 78,000 (gp78), mediating cell motility signaling in vitro and metastasis in vivo. Here, we cloned the full-length cDNAs for both human and mouse AMFR genes. Both genes encode a protein of 643 amino acids containing a seven transmembrane domain, a RING-H2 motif and a leucine zipper motif and showed a 94.7% amino acid sequence identity to each other. Analysis of the amino acid sequence of AMFR with protein databases revealed no significant homology with all known seven transmembrane proteins, but a significant structural similarity to a hypothetical protein of Caenorhabditis elegans, F26E4.11. Thus, AMFR is a highly conserved gene which encodes a novel type of seven transmembrane protein.  相似文献   

15.
A series of isoxazole carboxamide derivatives has been developed as potent ghrelin receptor antagonists. The synthesis and structure-activity relationship (SAR) are described.  相似文献   

16.
Novel isoxazole carboxamides have been identified as growth hormone secretagogue receptor (GHS-R) antagonists. Substituent modification off the 5-position of the isoxazole ring led to analogues with potent binding affinity and functional antagonism of GHS-R. A potent analogue (32) with high aqueous solubility and good GPCR selectivity was also identified as a potential pharmacological tool for in vivo studies.  相似文献   

17.
18.
As part of an on-going lead optimisation effort, a cross screening exercise identified an aryl sulphonyl amide hit that was optimised to afford a highly potent series of ghrelin receptor agonists.  相似文献   

19.
Ghrelin, a peptide purified from the stomach, is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R) and potently stimulates growth hormone release from the pituitary. Ghrelin is modified with an n-octanoyl group at Ser(3). This modification is essential for the activity of ghrelin. Previously, it was not known whether other ligands for GHS-R existed. Here, we report the purification of the second endogenous ligand for GHS-R from rat stomach. This ligand, named des-Gln(14)-ghrelin, is a 27-amino acid peptide, whose sequence is identical to ghrelin except for one glutamine. Southern blotting analysis under low hybridization conditions indicates that no homologue for ghrelin exists in rat genomic DNA. Furthermore, genomic sequencing and cDNA analysis indicate that des-Gln(14)-ghrelin is not encoded by a gene distinct from ghrelin but is encoded by an mRNA created by alternative splicing of the ghrelin gene. This is the first example of a novel mechanism that produces peptide multiplicity. Des-Gln(14)-ghrelin has an n-octanoyl modification at Ser(3) like ghrelin, which is also essential for its activity. Des-Gln(14)-ghrelin-stimulated growth hormone releases when injected into rats. Thus, growth hormone release is regulated by two gastric peptides, ghrelin and des-Gln(14)-ghrelin.  相似文献   

20.
Ghrelin and its receptor, growth hormone secretagogue receptor (GHS-R), are produced by various cell types and affect feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells immunoreactive for ghrelin vary. Further, no study has clarified the type of endocrine cells producing ghrelin and GHS-R in the non-mammalian pancreas. We immunohistochemically investigated ghrelin-like and GHS-R-like immunoreactivities in the Xenopus pancreas. Ghrelin-immunoreactive cells were observed both in islets and extrainsular regions, and they corresponded to insulin-containing cells. GHS-R-immunoreactive cells were observed in the islets, and these immunoreactive cells corresponded to insulin- and somatostatin-containing cells. These observations suggest that ghrelin is co-secreted with insulin and that ghrelin may act in an autocrine fashion for insulin-containing cells and in a paracrine fashion for somatostatin-containing cells in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号