首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In order to know when the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) first appears in germ line cells and whether the protein is also present in somatic cells as is vasa protein in Drosophila , the spatio-temporal distribution of the protein in Xenopus embryos was carefully investigated by fluorescent microscopy. Part of the observation was performed by whole-mount immunocytochemistry and immunoblotting. A distinct fluorescence of XVLG1 protein was first recognized in a juxta-nuclear location of germ line cells or presumptive primordial germ cells (pPGC) at stage 12 (late gastrula) and remained associated with the pPGC or primordial germ cells (PGC) throughout the following stages until stage 46 (feeding tadpole). In contrast, weak fluorescence was seen in the animal hemisphere rather than in the vegetal hemisphere of cleaving embryos and in the perinuclear region of somatic cells at stages 10–42 (early gastrula to young tadpole), respectively. Nearly the same pattern as revealed by fluorescence was seen by whole-mount immunocytochemistry, except that a small amount of XVLG1 protein seemed to be present in the germ plasm and pPGC of embryos earlier than stage 12. The presence of the protein in the somatic cells and the PGC was also shown by immunoblotting.  相似文献   

7.
ARID domain proteins are members of a highly conserved family involved in chromatin remodeling and cell-fate determination. Dril1 is the founding member of the ARID family and is involved in developmental processes in both Drosophila and Caenorhabditis elegans. We describe the first embryological characterization of this gene in chordates. Dril1 mRNA expression is spatiotemporally regulated and is detected in the involuting mesoderm during gastrulation. Inhibition of dril1 by either a morpholino or an engrailed repressor-dril1 DNA binding domain fusion construct inhibits gastrulation and perturbs induction of the zygotic mesodermal marker Xbra and the organizer markers chordin, noggin, and Xlim1. Xenopus tropicalis dril1 morphants also exhibit impaired gastrulation and axial deficiencies, which can be rescued by coinjection of Xenopus laevis dril1 mRNA. Loss of dril1 inhibits the response of animal caps to activin and secondary axis induction by smad2. Dril1 depletion in animal caps prevents both the smad2-mediated induction of dorsal mesodermal and endodermal markers and the induction of ventral mesoderm by smad1. Mesoderm induction by eFGF is uninhibited in dril1 morphant caps, reflecting pathway specificity for dril1. These experiments identify dril1 as a novel regulator of TGF(beta) signaling and a vital component of mesodermal patterning and embryonic morphogenesis.  相似文献   

8.
9.
MR1 is a major histocompatibility complex (MHC) class I-related gene conserved among mammals, and its predicted amino acid sequence is relatively closer to the classical MHC class I molecules among several divergent class I molecules. However, as its molecular nature and function have not yet been clarified, we set out in this study to establish transfected P388 murine cell lines that stably produce a large number of MR1 proteins and conducted analyses to investigate the molecular nature of MR1. Immunoprecipitation and Western blot analyses with specific antisera revealed that the MR1 protein can associate with beta(2)-microglobulin, suggesting its molecular form of a typical class I heterodimer composed of a heavy and a light chain (beta(2)-microglobulin), like the classical MHC class I molecules.  相似文献   

10.
TERMINAL FLOWER2 (TFL2) is the only homolog of heterochromatin protein1 (HP1) in the Arabidopsis genome. Because proteins of the HP1 family in fission yeast and animals act as key components of gene silencing in heterochromatin by binding to histone H3 methylated on lysine 9 (K9), here we examined whether TFL2 has a similar role in Arabidopsis. Unexpectedly, genes positioned in heterochromatin were not activated in tfl2 mutants. Moreover, the TFL2 protein localized preferentially to euchromatic regions and not to heterochromatic chromocenters, where K9-methylated histone H3 is clustered. Instead, TFL2 acts as a repressor of genes related to plant development, i.e. flowering, floral organ identity, meiosis and seed maturation. Up-regulation of the floral homeotic genes PISTILLATA, APETALA3, AGAMOUS and SEPALLATA3 in tfl2 mutants was independent of LEAFY or APETALA3, known activators of the above genes. In addition, transduced APETALA3 promoter fragments as short as 500 bp were sufficient for TFL2-mediated gene repression. Taken together, TFL2 silences specific genes within euchromatin but not genes positioned in heterochromatin of Arabidopsis.  相似文献   

11.
12.
13.
The genes encoding HLA-B27K and HLA-B27W were transfected into murine recipient cells. A monoclonal antibody HC-10, directed against free B-locus heavy chain, was the only reagent capable of efficiently detecting the HLA-B27 heavy chains in detergent lysates. These heavy chains were devoid of sialic acid. Trace amounts of HLA-B27 could be isolated with the anti-HLA-A,-B antibody W6/32, which reacts with the heavy chain beta 2-microglobulin complex. In marked contrast, HLA-A2 and -B7 genes, when transfected, yielded easily detectable amounts of antigen precipitable with W6/32, which carried the usual complement of sialic acids. Because the alpha 3 domains of HLA-B27 and HLA-B7 and the more COOH-terminal portions are identical in amino acid sequence, structural elements in the polymorphic alpha 1 and alpha 2 domains must control association of heavy chain with beta 2-microglobulin. Introduction of a human beta 2-microglobulin gene into L cells transfected with the HLA-B27 gene rescued the expression of HLA-B27 at the cell surface, as evidenced by reactivity with W6/32, surface staining, and the presence of sialic acid on the heavy chain.  相似文献   

14.
15.
We studied the intracellular traffic and subcellular distribution of MHC class I and class II antigens in comparison with a recycling surface glycoprotein, the transferrin receptor (Tfr), in the human lymphoblastoid cell line JY. No internalization was detectable for class I molecules. Class II molecules were internalized but did not recycle. In contrast, Tfr was found to internalize and recycle. The biosynthetic pathway of class II molecules differ from that of class I molecules in that it shows a delay (1-3 hr) in transport from trans-Golgi to cell surface: here it intersects the endocytic route. Immunoelectron microscopy using anti-MHC antibodies revealed the existence of vesicular structures that were intensely labeled for class II molecules. It is proposed that at this site combination of class II molecules with processed antigen could occur.  相似文献   

16.
Newly synthesized MHC II alpha- and beta-chains associated with the invariant chain chaperone (Ii) enter the endocytic pathway for Ii degradation and loading with peptides before transport to the cell surface. It is unclear how alphabetaIi complexes are sorted from the Golgi apparatus and directed to endosomes. However, indirect evidence tends to support direct transport involving the AP1 clathrin adaptor complex. Surprisingly, we show here that knocking down the production of AP1 by RNA interference did not affect the trafficking of alphabetaIi complexes. In contrast, AP2 depletion led to a large increase in surface levels of alphabetaIi complexes, inhibited their rapid internalization, and strongly delayed the appearance of mature MHC II in intracellular compartments. Thus, in the cell systems studied here, rapid internalization of alphabetaIi complexes via an AP2-dependent pathway represents a key step for MHC II delivery to endosomes and lysosomes.  相似文献   

17.
Proteolytic processing of amyloid beta protein precursor (AbetaPP) generates peptides that regulate normal cell signaling and are implicated in Alzheimer's disease pathogenesis. AbetaPP processing also occurs in nerve processes where AbetaPP is transported from the cell body by kinesin-I, a microtubule motor composed of two kinesin heavy chain and two kinesin light chain (Klc) subunits. AbetaPP transport is supposedly mediated by the direct AbetaPP-Klc1 interaction. Here we demonstrate that the AbetaPP-Klc1 interaction is not direct but is mediated by JNK-interacting protein 1 (JIP1). The phosphotyrosine binding domain of JIP1 binds the cytoplasmic tail of AbetaPP, whereas the JIP1 C-terminal region interacts with the tetratrico-peptide repeats of Klc1. We also show that JIP1 does not bridge the AbetaPP gene family member AbetaPP-like protein 2, APLP2, to Klc1. These results support a model where JIP1 mediates the interaction of AbetaPP to the motor protein kinesin-I and that this JIP1 function is unique for AbetaPP relative to its family member APLP2. Our data suggest that kinesin-I-dependent neuronal AbetaPP transport, which controls AbetaPP processing, may be regulated by JIP1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号