首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally believed that apoptosis is not associated with inflammation. However, we have found that phagocytosis of apoptotic cells by PMA-treated THP-1 cells and human monocyte-derived macrophages led to the production of proinflammatory cytokines, notably IL-8. These macrophages were obtained either by PMA treatment or by M-CSF treatment, possibly affecting the cytokine production after phagocytosis of apoptotic cells. In order to exclude the possibility, we employed resident tissue macrophages such as Kupffer cells and alveolar macrophages in this study and examined the production of cytokines after phagocytosis of apoptotic cells. Kupffer cells produced proinflammatory cytokines MIP-2 and TNF-alpha at the mRNA level. The MIP-2 protein was also detected by means of ELISA. Alveolar macrophages also produced the MIP-2 protein after phagocytosis of apoptotic cells. Furthermore, apoptotic thymocytes induced a similar response by these macrophages. These findings do support the notion that macrophages are apt to produce proinflammatory cytokines after phagocytosis of apoptotic cells.  相似文献   

2.
Adipose tissue secretions play an important role in the development of obesity-related pathologies such as diabetes. Through inflammatory cytokines production, adipose tissue stromavascular fraction cells (SVF), and essentially macrophages, promote adipocyte insulin resistance by a paracrine way. Since xanthine family compounds such as caffeine were shown to decrease inflammatory production by human blood cells, we investigated the possible effect of caffeine on Tumor Necrosis Factor alpha (TNFalpha) and Interleukin-6 (IL-6) expression by human adipose tissue primary culture. For that purpose, human subcutaneous adipose tissue obtained from healthy non-obese women (BMI: 26.7 +/- 2.2 kg/m2) after abdominal dermolipectomy, was split into explants and cultured for 6 hours with or without caffeine. Three different concentrations of caffeine were tested (0.5 microg/mL, 5 microg/mL and 50 microg/mL). After 6 hours of treatment, explants were subjected to collagenase digestion in order to isolate adipocytes and SVF cells. Then, TNFalpha and IL-6 mRNA were analysed by real-time PCR alternatively in adipocytes and SVF cells. In parallel, we checked gene expression of markers involved in adipocyte differenciation and in SVF cells inflammation and proliferation. Our findings show a strong and dose dependent down-regulation of TNF-alpha gene expression in both adipocyte and SVF cells whereas IL-6 was only down regulated in SVF cells. No effect of caffeine was noticed on the other genes studied. Thus, caffeine, by decreasing TNFalpha expression, could improve adipose tissue inflammation during obesity.  相似文献   

3.
Macrophages and dendritic cells (DC) play an essential role in the initiation and maintenance of immune response to pathogens. To analyze early interactions between Mycobacterium tuberculosis (Mtb) and immune cells, human peripheral blood monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) were infected with Mtb. Both cells were found to internalize the mycobacteria, resulting in the activation of MDM and maturation of MDDC as reflected by enhanced expression of several surface Ags. After Mtb infection, the proinflammatory cytokines TNF-alpha, IL-1, and IL-6 were secreted mainly by MDM. As regards the production of IFN-gamma-inducing cytokines, IL-12 and IFN-alpha, was seen almost exclusively from infected MDDC, while IL-18 was secreted preferentially by macrophages. Moreover, Mtb-infected MDM also produce the immunosuppressive cytokine IL-10. Because IL-10 is a potent inhibitor of IL-12 synthesis from activated human mononuclear cells, we assessed the inhibitory potential of this cytokine using soluble IL-10R. Neutralization of IL-10 restored IL-12 secretion from Mtb-infected MDM. In line with these findings, supernatants from Mtb-infected MDDC induced IFN-gamma production by T cells and enhanced IL-18R expression, whereas supernatants from MDM failed to do that. Neutralization of IFN-alpha, IL-12, and IL-18 activity in Mtb-infected MDDC supernatants by specific Abs suggested that IL-12 and, to a lesser extent, IFN-alpha and IL-18 play a significant role in enhancing IFN-gamma synthesis by T cells. During Mtb infection, macrophages and DC may have different roles: macrophages secrete proinflammatory cytokines and induce granulomatous inflammatory response, whereas DC are primarily involved in inducing antimycobacterial T cell immune response.  相似文献   

4.
IL-12, produced by APCs during the initial stages of an immune response, plays a pivotal role in the induction of IFN-gamma by NK and gammadeltaT cells and in driving the differentiation of Th1 cells, thus providing a critical link between innate and acquired immunity. Due to the unique position occupied by IL-12 in the regulation of immunity, many mechanisms have evolved to modulate IL-12 production. We have shown previously that macrophage-stimulating protein (MSP), the ligand for the stem cell-derived tyrosine kinase/recepteur d'origine nantais (RON) receptor, inhibits NO production by macrophages in response to IFN-gamma and enhances the expression of arginase. Mice lacking RON exhibit increased inflammation in a delayed-type hypersensitivity reaction and increased susceptibility to endotoxic shock. In this study we demonstrate that pretreatment of macrophages with MSP before IFN-gamma and LPS results in the complete inhibition of IL-12 production due to suppression of p40 expression. This response is mediated by the RON receptor, and splenocytes from RON(-/-) animals produce increased levels of IFN-gamma. MSP pretreatment of macrophages resulted in decreased tyrosine phosphorylation of Stat-1 and decreased expression of IFN consensus sequence binding protein in response to inflammatory cytokines. In addition to IL-12, the expression of IL-15 and IL-18, cytokines that are also dependent on IFN consensus sequence binding protein activation, is inhibited by pretreatment with MSP before IFN-gamma and LPS. We also show that the ability of MSP to inhibit IL-12 production is independent of IL-10. Taken together, these results suggest that MSP may actively suppress cell-mediated immune responses through its ability to down-regulate IL-12 production and thus inhibit classical activation of macrophages.  相似文献   

5.
The IL-12 family of cytokines, which include IL-12, IL-23, and IL-27, play critical roles in the differentiation of Th1 cells and are believed to contribute to the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Relatively little is known concerning the expression of IL-12 family cytokines by cells of the CNS, the affected tissue in MS. Previously, we and others demonstrated that peroxisome proliferator-activated receptor (PPAR)-gamma agonists suppress the development of EAE, alter T cell proliferation and phenotype, and suppress the activation of APCs. The present studies demonstrated that PPAR-gamma agonists, including the naturally occurring 15-deoxy-Delta(12,14)-PGJ(2) and the synthetic thiazoladinedione rosiglitazone, inhibited the induction of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 proteins by LPS-stimulated primary microglia. In primary astrocytes, LPS induced the production of IL-12p40, IL-23, and IL-27p28 proteins. However, IL-12p70 production was not detected in these cells. The 15-deoxy-Delta(12,14)-PGJ(2) potently suppressed IL-12p40, IL-23, and IL-27p28 production by primary astrocytes, whereas rosiglitazone suppressed IL-23 and IL-27p28, but not IL-12p40 in these cells. These novel observations suggest that PPAR-gamma agonists modulate the development of EAE, at least in part, by inhibiting the production of IL-12 family cytokines by CNS glia. In addition, we demonstrate that PPAR-gamma agonists inhibit TLR2, MyD88, and CD14 expression in glia, suggesting a possible mechanism by which these agonists modulate IL-12 family cytokine expression. Collectively, these studies suggest that PPAR-gamma agonists may be beneficial in the treatment of MS.  相似文献   

6.
During Toxoplasma gondii infection, macrophages, dendritic cells, and neutrophils are important sources of pro-inflammatory cytokines from the host. To counteract the pro-inflammatory activities, T. gondii is known to have several mechanisms inducing down-regulation of the host immunity. In the present study, we analyzed the production of proand anti-inflammatory cytokines from a human myelomonocytic cell line, THP-1 cells, in response to treatment with T. gondii lysate or lipopolysaccharide (LPS). Treatment of THP-1 cells with LPS induced production of IL-12, TNF-alpha, IL-8, and IL-10. Co-treatment of THP-1 cells with T. gondii lysate inhibited the LPS-induced IL-12, IL-8 and TNF-alpha expression, but increased the level of IL-10 synergistically. IL-12 and IL-10 production was down-regulated by anti-human toll-like receptor (TLR)-2 and TLR4 antibodies. T. gondii lysate triggered nuclear factor (NF)-kappaB-dependent IL-8 expression in HEK293 cells transfected with TLR2. It is suggested that immunosuppression induced by T. gondii lysate treatment might occur via TLR2-mediated NF-kappaB activation.  相似文献   

7.
The apoE production by tissue macrophages is crucial for the prevention of atherosclerosis and the aim of this study was to further elucidate how this apolipoprotein is regulated by cytokines present during inflammation. Here we studied apoE production in peripheral blood mononuclear cells (PBMC) and analysis was made with a newly developed apoE ELISpot assay. In PBMC, apoE secretion was restricted to monocytes with classical (CD14++CD16) and intermediate (CD14+CD16+) monocytes being the main producers. As earlier described for macrophages, production was strongly upregulated by TGF-β and downregulated by bacterial lipopolysaccharide (LPS) and the inflammatory cytokines IFN-γ, TNF-α and IL-1β. We could here show that a similar down-regulatory effect was also observed with the type I interferon, IFN-α, while IL-6, often regarded as one of the more prominent inflammatory cytokines, did not affect TGF-β-induced apoE production. The TNF-α inhibitor Enbrel could partly block the down-regulatory effect of IFN-γ, IFN-α and IL-1β, indicating that inhibition of apoE by these cytokines may be dependent on or synergize with TNF-α. Other cytokines tested, IL-2, IL-4, IL-12, IL-13, IL-17A and IL-23, had no inhibitory effect on apoE production. In contrast to the effect on monocytes, apoE production by primary hepatocytes and the hepatoma cell line HepG2 was more or less unaffected by treatment with cytokines or LPS.  相似文献   

8.
In this study we evaluated the ability of activated intrahepatic APCs to inhibit hepatitis B virus (HBV) replication in transgenic mice. Intrahepatic APCs were activated by administration of an anti-CD40 agonistic mAb (alphaCD40). We showed that a single i.v. injection of alphaCD40 was sufficient to inhibit HBV replication noncytopathically by a process associated with the recruitment of dendritic cells, macrophages, T cells, and NK cells into the liver and the induction of inflammatory cytokines. The antiviral effect depended on the production of IL-12 and TNF-alpha by activated APCs; however, it was mediated primarily by IFN-gamma produced by NK cells, and possibly T cells, that were activated by IL-12. Collectively, these results suggest that activated APCs can directly produce antiviral cytokines (IL-12, TNF-alpha) and trigger the production of other cytokines (i.e., IFN-gamma) by other cells (e.g., NK cells and T cells) that do not express CD40. These results provide insight into a hitherto unsuspected antiviral function of intrahepatic APCs, and they suggest that therapeutic activation of APCs may represent a new strategy for the treatment of chronic HBV infection.  相似文献   

9.
Macrophages release IFN-gamma on combined stimulation with IL-12 and IL-18, but the signaling requirements of this process and its regulation by other cytokines are unknown. Here, we demonstrate that STAT4 is indispensable for IL-12/IL-18-induced production of IFN-gamma by mouse peritoneal macrophages. Type 2 NO synthase (NOS2), which we previously found to be a prerequisite for IL-12-induced IFN-gamma production in NK cells, was not required for IFN-gamma production by these macrophages. IL-12 alone already induced the expression of IFN-gamma mRNA, but nuclear translocation of STAT4, the release of IFN-gamma protein, and the subsequent production of NO was strictly dependent on the simultaneous presence of IL-18. NF-kappa B, which mediates IL-18 effects in T cells, was only weakly activated by IL-12 and/or IL-18 in macrophages. Known inhibitors of macrophage functions (e.g., IL-4 and TGF-beta) also suppressed macrophage IFN-gamma production and the subsequent production of NOS2-derived NO. The inhibitory effect of IL-4 was paralleled by nuclear translocation of STAT6, which in EMSAs was able to bind to the same DNA oligonucleotide as STAT4. These results further define the production of IFN-gamma by macrophages and point to a diversity in the signals required for IFN-gamma production by various cell types.  相似文献   

10.
Since some cytokines effectively enhance the cytotoxicity of monoclonal antibodies, we investigated whether a combination of cytokines can augment the antibody-dependent cellular cytotoxicity (ADCC) of monoclonal antibodies 17-1A and BR55-2 against the colorectal carcinoma cell line HT29. Since monocytes/macrophages are important effector cells for ADCC, we used a new flow cytometric cytotoxicity assay, which allows the analysis of long-term-ADCC exerted by these cells. In our previous studies with peripheral blood mononuclear cells from normal donors, we found that IL-2, IL-12 and IFN-alpha increase ADCC. Therefore, we examined whether combination of these three cytokines with IL-2, IL-4, IL-6, IL-10, IL-12, IFN-alpha, IFN-gamma, GM-CSF, M-CSF and TNF-alpha may yield higher ADCC than obtained by the application of single cytokines. Indeed, we found that the combinations IL-2/IFN-alpha, IL-2/IL-12 and IL-12/IFN-alpha potentiated ADCC. Interestingly, the ineffective single cytokines TNF-alpha and GM-CSF in the combinations IL-2/TNF-alpha, IFN-alpha/TNF-alpha and IFN-alpha/GM-CSF also proved to enhance ADCC. In contrast, IL-4 significantly suppressed the IL-2, IL-12 and IFN-alpha-induced ADCC. In addition, the immunosuppressive cytokine IL-10 in higher concentrations significantly suppressed the IL-12-induced-ADCC. Our results may be useful to find combinations of cytokines and mAb for the treatment of cancer.  相似文献   

11.
Regulation of cytokine production during phagocytosis of apoptotic cells   总被引:11,自引:0,他引:11  
Chung EY  Kim SJ  Ma XJ 《Cell research》2006,16(2):154-161
  相似文献   

12.
Kesherwani V  Sodhi A 《Cytokine》2007,37(1):62-70
In the present study the quantitative role of p42/44 and p38 in the production of TNF-alpha, IL-1beta and IL-12 by murine peritoneal macrophages, in vitro, on treatment with Concanavalin A (ConA) has been investigated. Maximum expression/production of cytokines TNF-alpha, IL-1beta and IL-12 was observed after 16 h by RT-PCR and 24 h by ELISA, on in vitro treatment with ConA. To investigate the role of MAP kinases in the production of cytokines, pharmacological inhibitors of MAP kinases--PD98059, SB202190 and SP600125, were used. The expression of TNF-alpha, IL-1beta and IL-12 was down regulated in the presence of PD98059 and SB202190 in a dose dependent manner, suggesting the involvement of p42/44 and p38 in ConA induced production of TNF-alpha, IL-1beta and IL-12 by macrophages. It was observed that SP600125 did not have any effect on the expression of TNF-alpha, IL-1beta and IL-12. Using different combinations of MAPK inhibitors, it was found that 45% signal is conveyed via p42/44 and 25% via p38 in the production of these cytokines, by ConA treated macrophages while 30% signal passes through unidentified pathways.  相似文献   

13.
Chen YC  Wang SY 《Journal of virology》2002,76(19):9877-9887
Dengue virus (DV) primarily infects blood monocytes (MO) and tissue macrophages (M phi). We have shown in the present study that DV can productively infect primary human MO/M phi regardless of the stage of cell differentiation. After DV infection, the in vitro-differentiated MO/M phi secreted multiple innate cytokines and chemokines, including tumor necrosis factor alpha, alpha interferon (IFN-alpha), interleukin-1 beta (IL-1 beta), IL-8, IL-12, MIP-1 alpha, and RANTES but not IL-6, IL-15, or nitric oxide. Secretion of these mediators was highlighted by distinct magnitude, onset, kinetics, duration, and induction potential. A chemokine-to-cytokine hierarchy was noted in the magnitude and induction potential of secretion, and a chemokine-to-cytokine-to-chemokine/Th1 cytokine cascade could be seen in the production kinetics. Furthermore, we found that terminally differentiated MO/M phi cultured for more than 45 days could support productive DV infection and produce innate cytokines and chemokines, indicating that these mature cells were functionally competent in the context of a viral infection. In addition, DV replication in primary differentiated human MO/M phi was enhanced and prolonged in the presence of lipopolysaccharide (LPS), and LPS-mediated synergistic production of IFN-alpha could be seen in DV-infected MO/M phi. The secretion of innate cytokines and chemokines by differentiated MO/M phi suggests that regional accumulation of these mediators may occur in various tissues to which DV has disseminated and may thus result in local inflammation. The LPS-mediated enhancement of virus replication and synergistic IFN-alpha production suggests that concurrent bacterial infection may modulate cytokine-mediated disease progression during DV infection.  相似文献   

14.
This study examines the role of interleukin-6 (IL-6) in connective tissue metabolism. Effects of different preparations of IL-6 on production of collagenase and tissue inhibitor of metalloproteinases-1/erythroid potentiating activity production are studied in human fibroblasts, synoviocytes, and articular chondrocytes. In contrast to interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF alpha), IL-6 does not stimulate the production of collagenase, nor does it modulate the stimulatory effects of IL-1 beta and TNF alpha on the production of this proteinase. Furthermore, IL-6 has no detectable effect on prostaglandin E2 production, an additional proinflammatory response induced by IL-1 beta and TNF alpha. IL-6, however, is identified as a potent inducer of de novo synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity in all types of connective tissue cells examined. These results define new biological activities of IL-6 and provide further insight into the regulation of connective tissues by cytokines.  相似文献   

15.
Virulizin has demonstrated strong antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. Our previous studies have demonstrated that macrophages, NK cells, and cytokines are important in the antitumor mechanism of Virulizin. Virulizin treatment of tumor bearing mice results in the expansion as well as increased activity of monocytes/macrophages and production of cytokines IL-12 and TNFalpha and activation of NK cells. In this study we show that the inflammatory cytokine IL-17E (IL-25) is induced by Virulizin treatment and is part of its antitumor mechanism. IL-17E is a proinflammatory cytokine, which induces a T(H)2 type immune response, associated with eosinophil expansion and infiltration into mucosal tissues. IL-17E was increased in sera of Virulizin-treated mice bearing human melanoma xenografts, compared to saline-treated controls, as shown by 2D gel electrophoresis and ELISA. Treatment of splenocytes in vitro with Virulizin resulted in increased IL-17E mRNA expression, which peaked between 24 and 32 h post-stimulation. Both in vitro and in vivo experiments demonstrated that B cells produced IL-17E in response to Virulizin treatment. Furthermore, Virulizin treatment in vivo resulted in increased blood eosinophilia and eosinophil infiltration into tumors. Finally, injection of recombinant IL-17E showed antitumor activity towards xenografted tumors, which correlated with increased eosinophilia in blood and tumors. Taken together, these results support another antitumor mechanism mediated by Virulizin, through induction of IL-17E by B cells, leading to recruitment of eosinophils into tumors, which may function in parallel with macrophages and NK cells in mediating tumor destruction.  相似文献   

16.
We have recently demonstrated that two IFN-gamma-inducing cytokines, interleukin (IL)-12 and IL-18, synergistically induced the fungicidal activity of mouse peritoneal exudate cells (PEC) against Cryptococcus neoformans through NK cell production of interferon (IFN)-gamma and nitric oxide (NO) synthesis. In the present study, we further dissected these effects by examining the involvement of tumor necrosis factor (TNF)-alpha in the induction of IL-12/IL-18-stimulated PEC fungicidal activity. The addition of neutralizing anti-TNF-alpha mAb significantly suppressed IL-12/IL-18-stimulated PEC anticryptococcal activity. This effect was ascribed to the inhibition of macrophage NO synthesis, but not of IFN-gamma production by NK cells, because the same treatment inhibited the former response, but not the latter one. On the other hand, combined treatment with IL-12 and IL-18 synergistically induced the production of TNF-alpha by PEC and this effect was almost completely abrogated by neutralizing anti-IFN-gamma mAb. The cell type producing TNF-alpha among PEC was mostly macrophage. TNF-alpha significantly promoted macrophage NO production and anticryptococcal activity induced by IFN-gamma, and furthermore anti-TNF-alpha mAb partially inhibited these responses. Considered together, our results indicated that TNF-alpha contributed to the potentiation of IL-12/IL-18-induced PEC fungicidal activity against C. neoformans through enhancement of IFN-gamma-induced production of NO by macrophages, but not through increased production of IFN-gamma by NK cells.  相似文献   

17.
18.
Recently, we found that resident peritoneal macrophages produce MIP-2, one of the major chemokines for neutrophils, upon coculturing with late apoptotic cells, and that intraperitoneal injection of late apoptotic cells into the peritoneal cavity causes neutrophil infiltration via MIP-2. It is not known, however, whether or not macrophages are heterogeneous in such MIP-2 production. In this study, we examined changes in the surface phenotype during the differentiation of bone marrow cells into macrophages due to M-CSF and GM-CSF, and then examined the production of cytokines, namely IL-12 p40, MIP-2, IL-10, and TGF-β, following phagocytosis of late apoptotic cells with these macrophages or LPS stimulation of these macrophages. GM-CSF and M-CSF induced macrophage populations with distinct but overlapping cell surface phenotype. Although these macrophages phagocytosed late apoptotic cells to a similar extent, they produced either IL-12 p40 or IL-10, whereas they produced MIP-2 to a similar extent after the coculture, raising the possibility that late apoptotic cells may induce neutrophil infiltration in any organs, such as the liver and lungs, where the macrophages are differentiated by either M-CSF or GM-CSF, respectively.  相似文献   

19.
Sodhi A  Tripathi A 《Cytokine》2008,41(2):162-173
The role of immune-neuroendocrine interactions in the autoimmune diseases is well recognized. Autoimmune rheumatoid diseases in their active phase have been characterized by high levels of prolactin (PRL) as well as proinflammatory cytokines which suggest a co-relationship between them. In the present study, we have investigated the profile of cytokines secreted by macrophages on treatment with PRL and growth hormone (GH) in vitro. Significantly enhanced production of cytokines IL-1beta, IL-12p40 and IFN-gamma was observed on treatment of macrophages with PRL or GH. However, higher doses of PRL (1000 ng/ml) induced the production of anti-inflammatory cytokine IL-10, with significant abrogation in production of proinflammatory cytokines. It is further observed that PRL and GH induced the production of chemokines MIP-1alpha and RANTES. PRL but not GH selectively induced significantly enhanced production of MCP-1 and IP-10. It is further shown that p38 MAP kinase, STAT3 and NF-kappaB could play a differential regulatory role in PRL or GH induced production of cytokines by macrophages.  相似文献   

20.
Suzuki M  Mihara M 《Cytokine》2012,58(3):344-350
Adiponectin (Ad) is an adipokine secreted from adipocytes. It is reported that Ad has many biological activities. However, its influence on inflammation is controversial. In the present study, we examined the influence of Ad on production of CCL20 from THP-1 macrophages. THP-1 macrophages were prepared from THP-1 monocytes by PMA treatment. THP-1 macrophages were cultured for 24h with Ad, IL-6, or TNF-α alone or with combinations of Ad and cytokines. CCL20 mRNA expression was then determined by real-time PCR. Full-length Ad (fAd) slightly but significantly induced CCL20 mRNA expression, and interestingly, co-stimulation with fAd and IL-6 or with fAd and TNF-α synergistically increased the expression of CCL20 mRNA. We explored the mechanism behind the synergistic effect of fAd and these cytokines. fAd did not affect the expression of receptors for IL-6 and TNF, and IL-6 and TNF-α did not increase the expression of the receptor for Ad in THP-1 macrophages. The increased expression of CCL20 by fAd is much higher in THP-1 macrophages compared with THP-1 monocytes. Furthermore, MMP-12 production was increased by IL-6 and TNF-α in THP-1 macrophages but it was not detectable in THP-1 monocytes. Treatment of fAd with MMP-12 induced globular Ad (gAd), and the expression of CCL20 in THP-1 macrophages was increased more potently by gAd than by fAd. MMP inhibitor (UK370106) inhibited the expression of CCL20 induced by co-stimulation with fAd and IL-6 or TNF-α. In conclusion, gAd played an important role in CCL20 expression, and MMP-12 induced by IL-6 or TNF-α was involved in the synergistic effect of fAd and cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号