首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

3.
Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.  相似文献   

4.
Myotonic dystrophy 1 (DM1) is a multisystemic disease caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the gene coding for myotonic dystrophy protein kinase (DMPK). DMPK is a nuclear envelope (NE) protein that promotes myogenic gene expression in skeletal myoblasts. Muscular dystrophy research has revealed the NE to be a key determinant of nuclear structure, gene regulation, and muscle function. To investigate the role of DMPK in NE stability, we analyzed DMPK expression in epithelial and myoblast cells. We found that DMPK localizes to the NE and coimmunoprecipitates with Lamin-A/C. Overexpression of DMPK in HeLa cells or C2C12 myoblasts disrupts Lamin-A/C and Lamin-B1 localization and causes nuclear fragmentation. Depletion of DMPK also disrupts NE lamina, showing that DMPK is required for NE stability. Our data demonstrate for the first time that DMPK is a critical component of the NE. These novel findings suggest that reduced DMPK may contribute to NE instability, a common mechanism of skeletal muscle wasting in muscular dystrophies.  相似文献   

5.
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.  相似文献   

6.
Human myotonic dystrophy protein kinase (DMPK) is a member of a novel class of multidomain protein kinases that regulate cell size and shape in a variety of organisms. However, little is currently known about the general properties of DMPK including domain function, substrate specificity, and potential mechanisms of regulation. Two forms of the kinase are expressed in muscle, DMPK-1 and DMPK-2. We demonstrate that the larger DMPK-1 form (the primary translation product) is proteolytically cleaved near the carboxy terminus to generate the smaller DMPK-2 form. We further demonstrate that the coiled-coil domain is required for DMPK oligomerization; coiled-coil mediated oligomerization also correlated with enhanced catalytic activity. DMPK was found to exhibit a novel catalytic activity similar to, but distinct from, related protein kinases such as protein kinase C and A, and the Rho kinases. We observed that recombinant DMPK-1 exhibits low activity, whereas the activity of carboxy-terminally truncated DMPK is increased approximately 3-fold. The inhibitory activity of the full-length kinase was mapped to what appears to be a pseudosubstrate autoinhibitory domain at the extreme carboxy terminus of DMPK. To date, endogenous activators of DMPK are unknown; however, we observed that DMPK purified from cells exposed to the G protein activator GTP-gamma-S exhibited an approximately 2-fold increase in activity. These results suggest a general model of DMPK regulation with two main regulatory branches: short-term activation of the kinase in response to G protein second messengers and long-term activation as a result of proteolysis.  相似文献   

7.
DMPK, the product of the mutated gene in myotonic dystrophy type 1, belongs to the subfamily of Rho-associated serine-threonine protein kinases, whose members play a role in actin-based cell morphodynamics. Not much is known about the physiological role of differentially localized individual DMPK splice isoforms. We report here that prominent stellar-shaped stress fibers are formed during early and late steps of differentiation in DMPK-deficient myoblast-myotubes upon complementation with the short cytosolic DMPK E isoform. Expression of DMPK E led to an increased phosphorylation status of MLC2. We found no such effects with vectors that encode a mutant DMPK E which was rendered enzymatically inactive or any of the long C-terminally anchored DMPK isoforms. Presence of stellar structures appears associated with changes in cell shape and motility and a delay in myogenesis. Our data strongly suggest that cytosolic DMPK participates in remodeling of the actomyosin cytoskeleton in developing skeletal muscle cells.  相似文献   

8.
Myotonic dystrophy is a multisystemic disorder, due to a CTG triplet expansion at the 3'UTR of the DM1 gene encoding for myotonic dystrophy protein kinase. Recent studies indicate that decreased DMPK levels could account for part of the symptoms suggesting a role of this protein in skeletal muscle differentiation. To investigate this aspect, polyclonal antibodies were raised against two peptides of the catalytic domain and against the human full-length DMPK (DMFL). In western blots, anti-hDMFL antibody was able to detect low amounts of purified human recombinant protein and recognized the splicing isoforms in heart and stomach of overexpressing mice. In human muscle extracts, this antibody specifically recognized a protein of apparent molecular weight of 85 kDa and it specifically stained neuromuscular junctions in skeletal muscle sections. In contrast, both anti-peptide antibodies demonstrated low specificity for either denatured or native DMPK, suggesting that these two epitopes are probably cryptic sites. Using anti-hDMFL, the expression and localization of DMPK was studied in human skeletal muscle cells (SkMC). Western blot analysis indicated that the antibody recognizes a main protein of apparent MW of 75 kDa, which appears to be expressed during differentiation into myotubes. Immunolocalization showed low levels of DMPK in the cytoplasm of undifferentiated cells; during differentiation the staining became more intense and was localized to the terminal part of the cells, suggesting that DMPK might have a role in cell elongation and fusion.  相似文献   

9.
Myotonic dystrophy protein kinase (DMPK) was designated as a gene responsible for myotonic dystrophy (DM) on chromosome 19, because the gene product has extensive homology to protein kinase catalytic domains. DM is the most common disease with multisystem disorders among muscular dystrophies. The genetic basis of DM is now known to include mutational expansion of a repetitive trinucleotide sequence (CTG)n in the 3'-untranslated region (UTR) of DMPK. Full-length DMPK was detected and various isoforms of DMPK have been reported in skeletal and cardiac muscles, central nervous tissues, etc. DMPK is localized predominantly in type I muscle fibers, muscle spindles, neuromuscular junctions and myotendinous tissues in skeletal muscle. In cardiac muscle it is localized in intercalated dises and Purkinje fibers. Electron microscopically it is detected in the terminal cisternae of SR in skeletal muscle and the junctional and corbular SR in cardia muscle. In central nervous system, it is located in many neurons, especially in the cytoplasm of cerebellar Purkinje cells, hippocampal interneurons and spinal motoneurons. Electron microscopically it is detected in rough endoplasmic reticulum. The functional role of DMPK is not fully understood, however, it may play an important role in Ca2+ homeostasis and signal transduction system. Diseased amount of DMPK may play an important role in the degeneration of skeletal muscle in adult type DM. However, other molecular pathogenetical mechanisms such as dysfunction of surrounding genes by structural change of the chromosome by long trinucleotide repeats, and the trans-gain of function of CUG-binding proteins might be responsible to induce multisystemic disorders of DM such as myotonia, endocrine dysfunction, etc.  相似文献   

10.
Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy. Patients have a large CTG repeat expansion in the 3' untranslated region of the DMPK gene, which encodes DM protein kinase. RNA trans-dominant models, which hypothesize that the expanded CUG trinucleotide repeat on DMPK mRNA sequesters a factor or disrupts the RNA metabolism of the DMPK mRNA itself and other mRNAs in a trans dominant manner, have been proposed. A candidate for the sequestered factor, termed CUG-binding protein (CUG-BP), exists in several alternatively spliced isoforms. We found a human isoform with a twelve base insertion (deduced amino acids Leu-Tyr-Leu-Gln) and an isoform with a three base insertion (deduced amino acid Ala) insertion. In order to elucidate the effects of CUG-BP on DMPK expression, we introduced CUG-BP and DMPK cDNA transiently into COS-7 cells. Cotransfection of CUG-BP did not significantly affect the expression of either wild type or mutant DMPK at the mRNA level. On the other hand, cotransfection of CUG-BP significantly affected the expression of both the wild type and mutant DMPKs at the protein level. This reduction was remarkable when the mutant DMPK construct was used.  相似文献   

11.
12.
13.
We expressed human myotonic dystrophy protein kinase (DMPK) in the fission yeast Schizosaccharomyces pombe, in which the overexpression of human DMPK affects cell growth and cell shape. The human DMPK protein has a leucine-rich domain at the N-terminus, a serine/threonine kinase domain in the middle, and a hydrophobic region at the C-terminus. C-Terminus-deleted DMPK produced a middle-swollen phenotype (lemon-like shape), indicating an abnormality in cell division. On the other hand, when both the kinase domain and C-terminus were present, the expression of DMPK resulted in polarized cell growth and multinucleated/branched cells. The lemon-like phenotype seen with the C-terminus-deleted DMPK disappeared when the ATP binding site of DMPK was disrupted by replacing the lysine at amino acid 100 with arginine (K100R mutant). However, polarized and/or multinucleated cells lacking the DMPK N-terminus were not rescued by the K100R mutation. Therefore, we conclude that the N-terminus of DMPK plays an important role in DMPK kinase activity, and that the C-terminus of DMPK determines the intracellular localization of the protein.  相似文献   

14.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

15.
16.
17.
The genetic abnormality in myotonic muscular dystrophy, multiple CTG repeats lie upstream of a gene that encodes a novel protein kinase, myotonic dystrophy protein kinase (DMPK). Phospholemman (PLM), a major membrane substrate for phosphorylation by protein kinases A and C, induces Cl currents (I(Cl(PLM))) when expressed in Xenopus oocytes. To test the idea that PLM is a substrate for DMPK, we measured in vitro phosphorylation of purified PLM by DMPK. To assess the functional effects of PLM phosphorylation we compared I(Cl(PLM)) in Xenopus oocytes expressing PLM alone to currents in oocytes co-expressing DMPK, and examined the effect of DMPK on oocyte membrane PLM expression. We found that PLM is indeed a good substrate for DMPK in vitro. Co-expression of DMPK with PLM in oocytes resulted in a reduction in I(Cl(PLM)). This was most likely a specific effect of phosphorylation of PLM by DMPK, as the effect was not present in oocytes expressing a phos(-) PLM mutant in which all potential phosphorylation had been disabled by Ser --> Ala substitution. The biophysical characteristics of I(Cl(PLM)) were not changed by DMPK or by the phos(-) mutation. Co-expression of DMPK reduced the expression of PLM in oocyte membranes, suggesting a possible mechanism for the observed reduction in I(Cl(PLM)) amplitude. These data show that PLM is a substrate for phosphorylation by DMPK and provide functional evidence for modulation of PLM function by phosphorylation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号