首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this study, we demonstrated that the two ginger-derived components have a potent and unique pharmacological function in 3T3-L1 adipocytes via different mechanisms. Both pretreatment of 6-shogaol (6S) and 6-gingerol (6G) significantly inhibited the tumor necrosis factor-α (TNF-α) mediated downregulation of the adiponectin expression in 3T3-L1 adipocytes. Our study demonstrate that (1) 6S functions as a PPARγ agonist with its inhibitory mechanism due to the PPARγ transactivation, and (2) 6G is not a PPARγ agonist, but it is an effective inhibitor of TNF-α induced c-Jun-NH2-terminal kinase signaling activation and thus, its inhibitory mechanism is due to this inhibitory effect.  相似文献   

3.
Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes   总被引:7,自引:0,他引:7  
Resistin is an adipocyte-derived hormone whose role in the development of insulin resistance is controversial. Endothelin-1 (ET-1) is a 21 amino acid peptide demonstrated to possess vasoconstrictor, positive inotropic, mitogenic, and metabolic properties. In numerous disease states, including congestive heart failure, obesity, and diabetes, elevated levels of ET-1 have been reported and are thought to contribute to the pathology of the disease. A recent study demonstrated that ET-1 induces the expression and stimulates the secretion of the adipose tissue-derived hormone leptin. However, the effect of ET-1 on resistin secretion has not been determined. To characterize the effect of ET-1 on resistin secretion, 3T3-L1 fibroblasts were differentiated into adipocytes and allowed to mature for 14 days. Cells were incubated for 24h with ET-1 (1-100 nM), insulin (1-100 nM), insulin+ET-1 (100 nM I+E) or the appropriate vehicle or antagonist. At the end of the incubation period, resistin secretion was determined in the media by immunoblotting and densitometric analysis. ET-1 (1-100 nM) significantly decreased basal resistin secretion by 49% (1 nM), 43% (10nM), and 59% (100 nM). Insulin (1-100 nM) produced a concentration-dependent increase in resistin secretion from 3T3-L1 adipocytes (1 nM-42%, 10nM-55%, and 100 nM-86% vs. control). Insulin-stimulated resistin secretion (100 nM) was almost completely inhibited (94%) by ET-1 (100 nM). The effects of ET-1 on resistin protein secretion were inhibited by co-incubation with the ET(A) receptor antagonist BQ-610. In conclusion, our studies demonstrate that basal and hormonal stimulation of resistin secretion by insulin are inhibited by ET-1. Such findings demonstrate that resistin secretion is regulated in a similar manner to other adipose tissue factors, including leptin, in 3T3-L1 adipocytes. In addition, our findings suggest that vascular factors such as ET-1 may regulate whole body energy metabolism through adipocyte-derived hormones, including leptin and resistin.  相似文献   

4.
Adipose tissue is an active endocrine organ producing a variety of cytokines and chemokines, which may be involved in the deregulation of glucose and lipid homeostasis as well as in the inflammatory state observed in obesity. We have shown previously that differentiated human adipocytes secrete a variety of cytokines which are able to induce skeletal muscle insulin resistance. However, the regulation of these factors by anti-diabetic drugs has remained mainly undefined. Secretion of IL-6, IL-8, MIP-1alpha/beta, and MCP-1 by adipocytes was found to be downregulated by adiponectin. In parallel to adiponectin, the AMPK activator AICAR also decreased the secretion of most of the measured cytokines including IL-6 and MIP-1alpha/beta but not IL-8. In contrast, the thiazolidinedione troglitazone only slightly reduced cytokine secretion despite increasing the phosphorylation of AMPK. In conclusion, we show that adipocyte secretion is strongly inhibited by the anti-diabetic adipocyte hormone adiponectin, an effect that can also be mimicked by the AMPK activator AICAR. However, the PPARgamma agonist troglitazone is much less effective in reducing cytokine secretion.  相似文献   

5.
Evidence has accumulated that some of the angiotensin II AT1 receptor antagonists have insulin-sensitizing property. We thus examined the effect of telmisartan on insulin action using 3T3-L1 adipocytes. With standard differentiation inducers, a higher dose of telmisartan effectively facilitated differentiation of 3T3-L1 preadipocytes. Treatment of both differentiating adipocytes and fully differentiated adipocytes with telmisartan caused a dose-dependent increase in mRNA levels for PPARgamma target genes such as aP2 and adiponectin. By contrast, telmisartan attenuated 11beta-hydroxysteroid dehydrogenase type 1 mRNA level in differentiated adipocytes. Of note, we demonstrated for the first time that telmisartan augmented GLUT4 protein expression and 2-deoxy glucose uptake both in basal and insulin-stimulated state of adipocytes, which may contribute, at least partly, to its insulin-sensitizing ability.  相似文献   

6.
7.
Conjugated linoleic acid (CLA) is a mixture of dietary fatty acids that has various beneficial effects including decreasing cancer, atherosclerosis, diabetes and inflammation in animal models. Some controversy exists on the specific isomers of CLA that are responsible for the benefits observed. This study was conducted to examine how different CLA isomers regulate gene expression in RAW 264.7. A mouse macrophage cell line, RAW 264.7, was treated with five different CLA isomers (9E,11E-, 9Z,11E-, 9Z,11Z-, 10E,12Z- and 11Z,13E-CLA). Gene expression microarrays were performed, and several significantly regulated genes of interest were verified by a real-time polymerase chain reaction (PCR). Examination of the biological functions of various significantly regulated genes by the five CLA isomers showed distinct properties. Isomers 9E,11E-, 9Z,11Z-, 10E,12Z- and 11Z,13E-CLA decreased production of proinflammatory cytokines such as interleukin (IL)-1α, IL-1β and IL-6. Many of CLA's effects are believed to be mediated by the fatty acid receptors such as the peroxisome proliferator-activated receptors (PPAR) and retinoid-X-receptors (RXR). Using PPAR and RXR specific antagonists and coactivator recruitment assays, it was evident that multiple mechanisms were responsible for gene regulation by CLA isomers. Coactivator recruitment by CLA isomers showed their distinct properties as selective receptor modulators for PPARγ and RXRα. These studies demonstrate distinct isomer differences in gene expression by CLA and will have important ramifications for determining the potential therapeutic benefit of these dietary fatty acids in prevention of inflammation-related diseases.  相似文献   

8.
Adiponectin is a hormone secreted from adipose tissue, and serum levels are decreased with obesity and insulin resistance. Because prolactin (PRL) and growth hormone (GH) can affect insulin sensitivity, we investigated the effects of these hormones on the regulation of adiponectin in human adipose tissue in vitro and in rodents in vivo. Adiponectin secretion was significantly suppressed by PRL and GH in in vitro cultured human adipose tissue. Furthermore, PRL increased adiponectin receptor 1 (AdipoR1) mRNA expression and GH decreased AdipoR2 expression in the cultured human adipose tissue. In transgenic mice expressing GH, and female mice expressing PRL, serum levels of adiponectin were decreased. In contrast, GH receptor deficient mice had elevated adiponectin levels, while PRL receptor deficient mice were unaffected. In conclusion, we demonstrate gene expression of AdipoR1 and AdipoR2 in human adipose tissue for the first time, and show that these are differentially regulated by PRL and GH. Both PRL and GH reduced adiponectin secretion in human adipose tissue in vitro and in mice in vivo. Decreased serum adiponectin levels have been associated with insulin resistance, and our data in human tissue and in transgenic mice suggest a role for adiponectin in PRL and GH induced insulin resistance.  相似文献   

9.
10.
The present study was conducted to measure ob mRNA abundance in the zinc-deficient (ZD) rats and the secretion of leptin from adipose tissue obtained from ZD, zinc-adequate (ZA), and pair-fed (PF) rats. It was found that ob mRNA abundance was greatest (P < 0.05) in adipose tissue obtained from ZA and PF rats. Ob mRNA abundance was similar in PF and ZD rats. To study leptin secretion from adipose tissue in a cell culture model, a method was developed to use excised epididymal adipose tissue from ZD, ZA, and PF rats. Tissue was incubated in Opti-modified Eagle's medium (MEM) cell culture medium in which concentrations of zinc and insulin were manipulated. It was observed that leptin secretion was higher (P < 0.05) in adipose tissue obtained from ZA than ZD and PF rats. Secretion of leptin was higher in adipose tissue of PF than ZD rats (P < 0.05). Surprisingly, media zinc content in this ex vivo model tended to suppress secretion of leptin. This suppression seems to be zinc specific and might be caused by the sequestration of insulin in the culture medium. Our results indicate that the reduction in serum leptin observed in ZD rats is likely caused by not only a reduction in body fat, but also by a decrease in leptin synthesis and secretion per gram of adipose tissue. Taking these results into account along with a prior study (1), it is possible that even a marginal zinc deficiency could affect leptin secretion and serum leptin concentrations. Impaired leptin secretion caused by zinc deficiency might be one factor contributing to hypogonadism observed in zinc deficiency.  相似文献   

11.
Adiponectin is an adipocytokine with profound anti-diabetic and anti-atherogenic effects. Even though adiponectin expression is restricted to adipocytes, serum levels are paradoxically decreased in obesity. We characterized how adiponectin expression and regulation relates to adipocyte differentiation in a human adipocyte cell culture model. Adiponectin was not expressed by human preadipocytes. Differentiation into adipocytes was necessary to induce an increasing expression of adiponectin (359 +/- 64-fold, P < 0.001) in parallel to an increasing expression of adipocyte differentiation markers. Adiponectin protein synthesis and secretion occurred specifically in mature adipocytes and may thus serve as a distinctive marker of adipocyte differentiation. Addition of serum during the course of differentiation as well as acutely to mature adipocytes significantly and concentration-dependently suppressed adiponectin to almost non-detectable levels (to 9.8 +/- 0.03%, P = 0.0043), suggesting a strong humoral serum component of adiponectin down-regulation. This serum component is present in both obese and lean individuals with a tendency to a stronger effect in obese men and women. Separation by molecular size suggests that higher molecular weight (>30 kDa) fractions exert inhibition of adiponectin. Withdrawal of adipogenic ingredients from the culture medium also resulted in a decrease of adiponectin expression and secretion to 62.01 +/- 0.09% and 70.86 +/- 0.05%, respectively. We identified insulin as a critical component to maintain adiponectin expression with a down-regulation to 61.6 +/- 0.1% (P = 0.0011) in the absence of insulin. These dynamic changes of adiponectin expression and regulation with adipocyte differentiation are of physiological interest in the light of the paradoxical decrease of adiponectin levels and the continuous recruitment of preadipocytes for differentiation in obesity.  相似文献   

12.
13.
It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα.  相似文献   

14.

Aims

To investigate whether gene polymorphisms of both adiponectin and peroxisome proliferator-activated receptor gamma (PPARγ) influence type 2 diabetes mellitus (T2DM) respectively in the Han people of the Wenzhou region of China and whether the interaction of gene polymorphism between adiponectin and PPARγ influences T2DM in the same subjects.

Main methods

This study included 198 patients with T2DM and 255 healthy individuals. Polymerase chain reaction–restriction fragment length polymorphism analyses were used to detect single nucleotide polymorphisms (SNPs). Logistic regression and multifactor dimensionality reduction (MDR) methods were used to analyze gene–gene interactions.

Key findings

The frequency distribution of adiponectin SNP11377 was not different (p = 0.792), but the frequency of CC, CG and GG genotypes showed the difference between two groups (T2DM: 57.1%, 33.3%, and 9.6%; control: 53.7%, 41.6%, and 4.7%, respectively; p = 0.047). Adiponectin SNP45, SNP276 and PPAR γ SNPp12a were equally distributed between the two groups (p = 0.586, 0.119, 0.437, respectively), and there were no significant differences in genotype frequencies between the two groups (p = 0.751, 0.144, 0.479, respectively). Linkage disequilibrium existed between SNP11377 and SNP45 (p < 0.001) and SNP45 and SNP276 (p < 0.001). Haplotype analyses showed no significant differences between the T2DM and control groups. According to the logistic regression and MDR gene–gene interaction analyses, SNP11377GG and SNP276GT interactions increased the risk of T2DM (odds ratio = 6.984, p = 0.012).

Significance

Adiponectin SNP11377 and SNP276 gene–gene interactions are associated with the increased risk of T2DM in this population.  相似文献   

15.
16.
Low plasma levels of adiponectin (hypoadiponectinemia) and elevated circulating concentrations of plasminogen activator inhibitor (PAI)-1 are causally associated with obesity-related insulin resistance and cardiovascular disease. However, the mechanism that mediates the aberrant production of these two adipokines in obesity remains poorly understood. In this study, we investigated the effects of hypoxia and reactive oxygen species (ROS) on production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Quantitative PCR and immunoassays showed that ambient hypoxia markedly suppressed adiponectin mRNA expression and its protein secretion, and increased PAI-1 production in mature adipocytes. Dimethyloxallyl glycine, a stabilizer of hypoxia-inducible factor 1alpha (HIF-1alpha), mimicked the hypoxia-mediated modulations of these two adipokines. Hypoxia caused a modest elevation of ROS in adipocytes. However, ablation of intracellular ROS by antioxidants failed to alleviate hypoxia-induced aberrant production of adiponectin and PAI-1. On the other hand, the antioxidants could reverse hydrogen peroxide (H2O2)-induced dysregulation of adiponectin and PAI-1 production. H2O2 treatment decreased the expression levels of peroxisome proliferator-activated receptor gamma (PPARgamma) and CCAAT/enhancer binding protein (C/EBPalpha), but had no effect on HIF-1alpha, whereas hypoxia stabilized HIF-1alpha and decreased expression of C/EBPalpha, but not PPARgamma. Taken together, these data suggest that hypoxia and ROS decrease adiponectin production and augment PAI-1 expression in adipocytes via distinct signaling pathways. These effects may contribute to hypoadiponectinemia and elevated PAI-1 levels in obesity, type 2 diabetes, and cardiovascular diseases.  相似文献   

17.
18.
19.
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has been identified as a natural ligand for peroxisome proliferator-activated receptor (PPAR) γ to promote adipogenesis. However, it remains elusive about the ability of PPARγ-expressing adipocytes to produce PGJ2 series and the role in the life cycle of adipocytes. Here, we developed an enzyme-linked immunosorbent assay specific for 15d-PGJ2. The analysis using this method revealed the increase in the endogenous synthesis of immunoreactive 15d-PGJ2 in cultured adipocytes during the maturation phase. Further studies using cyclooxygenase inhibitors clarified the contribution of endogeous 15d-PGJ2 produced by mature adipocytes to upregulation of fat storage in an autocrine manner.  相似文献   

20.
We examined the effects of exercise training (treadmill running over 9 weeks) on the ability of isolated adipocytes to secrete tumor necrosis factor-alpha (TNF-alpha) and type 1 soluble TNF receptor (sTNFR1) in vitro in Wistar rats. We also examined the effects of exercise training on the expression of membrane bound forms of type 1 TNF receptor (mTNFR1) in adipocyte crude membranes of the same rat subjects. Exercise training significantly increased the secretions of TNF-alpha from isolated adipocytes. Treatment with a cyclooxygenase inhibitor, either indomethacin (100 microM) or eicosatetraynoic acid (100 microM), significantly blocked the release of TNF-alpha from adipocytes in both exercise-trained rat group and sedentary control rat group, suggesting that some cyclooxygenase metabolite(s) acts as a ligand in TNF-alpha synthesis. Decreased amounts of TNF-alpha were found to be significantly greater in both exercise-trained rat group than in sedentary control rat group after incubation with inhibitors. Thus, the inhibitory effect of both indomethacin and eicosatetraynoic acid was significantly greater in adipocytes from exercise-trained rats. Both plasma sTNFR1 levels and adipocytes-derived sTNFR1 were found to be significantly less in the exercise-trained rat group. Western blot analysis revealed that exercise training remarkably increased the expressions of mTNFR1 in adipocyte crude membrane. Thus, exercise training enhanced the ability of isolated adipocytes to secrete TNF-alpha with reduced secretion of sTNFR1, and provoked the greater expressions of mTNFR1 in adipocyte crude membrane. These alterations may induce enhanced the autocrine effects of TNF-alpha within adipocytes in exercise-trained rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号