首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional cerebral blood flow (rCBF) was measured at orbitomeatal (OM) plane +5.0 and +9.0 cm in 10 subjects at rest and during dynamic hand contractions before and after axillary blockade. Handgrip strength was significantly reduced, and rating of perceived exertion increased after blockade. During hand contractions before blockade, contralateral hemispheric cerebral blood flow (CBF) at OM +9.0 increased from a resting value of 58 (49-75) to 63 (52-82) ml.100 g-1.min-1; contralateral motor sensory rCBF at OM +9 from 58 (50-77) to 71 (64-84); motor sensory rCBF at OM +5 from 67 (54-76) to 77 (64-87) and 70 (62-84) contralaterally and ipsilaterally, respectively; and supplementary motor area (SM) rCBF from 64 (53-69) to 75 (67-88) ml.100 g-1.min-1. During dynamic hand contractions after axillary blockade, CBF did not increase at OM +5 or in the SM. Furthermore, contralateral motor sensory rCBF at OM +9 increased much less. Axillary blockade had no effect on resting CBF, rCBF, or increases in the two during hand contractions of the opposite hand. Thus neural feedback from the contracting muscle is necessary for the increases in SM bilateral OM +5 motor sensory rCBF and the maximal increase in contralateral OM +9 motor sensory rCBF during dynamic hand contractions.  相似文献   

2.
This investigation was designed to determine central command's role on carotid baroreflex (CBR) resetting during exercise. Nine volunteer subjects performed static and rhythmic handgrip exercise at 30 and 40% maximal voluntary contraction (MVC), respectively, before and after partial axillary neural blockade. Stimulus-response curves were developed using the neck pressure-neck suction technique and a rapid pulse train protocol (+40 to -80 Torr). Regional anesthesia resulted in a significant reduction in MVC. Heart rate (HR) and ratings of perceived exertion (RPE) were used as indexes of central command and were elevated during exercise at control force intensity after induced muscle weakness. The CBR function curves were reset vertically with a minimal lateral shift during control exercise and exhibited a further parallel resetting during exercise with neural blockade. The operating point was progressively reset to coincide with the centering point of the CBR curve. These data suggest that central command was a primary mechanism in the resetting of the CBR during exercise. However, it appeared that central command modulated the carotid-cardiac reflex proportionately more than the carotid-vasomotor reflex.  相似文献   

3.
The purpose of this investigation was to determine whether there were differences in the magnitude of insular cortex activation across varying intensities of static and dynamic exercise. Eighteen healthy volunteers were studied: eight during two intensities of leg cycling and ten at different time periods during sustained static handgrip at 25% maximal voluntary contraction or postexercise cuff occlusion. Heart rate, blood pressure (BP), perceived exertion, and regional cerebral blood flow (rCBF) distribution data were collected. There were significantly greater increases in insular rCBF during lower (6.3 +/- 1.7%; P < 0.05) and higher (13.3 +/- 3.8%; P < 0.05) intensity cycling and across time during static handgrip (change from rest for right insula at 2-3 min, 3.8 +/- 1.1%, P < 0.05; and at 4-5 min, 8.6 +/- 2.8%, P < 0.05). Insular rCBF was decreased during postexercise cuff occlusion (-5.5 +/- 1.2%; P < 0.05) with BP sustained at exercise levels. Right insular rCBF data, but not left, were significantly related, with individual BP changes (r(2) = 0.80; P < 0.001) and with ratings of perceived exertion (r(2) = 0.79; P < 0.01) during exercise. These results suggest that the magnitude of insular activation varies with the intensity of exercise, which may be further related to the level of perceived effort or central command.  相似文献   

4.
To localize a central nervous feed-forward mechanism involved in cardiovascular regulation during exercise, brain activation patterns were measured in eight subjects by employing positron emission tomography and oxygen-15-labeled water. Scans were performed at rest and during rhythmic handgrip before and after axillary blockade with bupivacaine. After the blockade, handgrip strength was reduced to 25% (range 0-50%) of control values, whereas handgrip-induced heart rate and blood pressure increases were unaffected (13 +/- 3 beats/min and 12 +/- 5 mmHg, respectively; means +/- SE). Before regional anesthesia, handgrip caused increased activation in the contralateral sensory motor area, the supplementary motor area, and the ipsilateral cerebellum. We found no evidence for changes in the activation pattern due to an interaction between handgrip and regional anesthesia. This was true for both the blocked and unblocked arm. It remains unclear whether the activated areas are responsible for the increase in cardiovascular variables, but neural feedback from the contracting muscles was not necessary for the activation in the mentioned areas during rhythmic handgrip.  相似文献   

5.
The purpose was to compare patterns of brain activation during imagined handgrip exercise and identify cerebral cortical structures participating in "central" cardiovascular regulation. Subjects screened for hypnotizability, five with higher (HH) and four with lower hypnotizability (LH) scores, were tested under two conditions involving 3 min of 1) static handgrip exercise (HG) at 30% of maximal voluntary contraction (MVC) and 2) imagined HG (I-HG) at 30% MVC. Force (kg), forearm integrated electromyography, rating of perceived exertion, heart rate (HR), mean blood pressure (MBP), and differences in regional cerebral blood flow distributions were compared using an ANOVA. During HG, both groups showed similar increases in HR (+13 +/- 5 beats/min) and MBP (+17 +/- 3 mmHg) after 3 min. However, during I-HG, only the HH group showed increases in HR (+10 +/- 2 beats/min; P < 0.05) and MBP (+12 +/- 2 mmHg; P < 0.05). There were no significant increases or differences in force or integrated electromyographic activity between groups during I-HG. The rating of perceived exertion was significantly increased for the HH group during I-HG, but not for the LH group. In comparison of regional cerebral blood flow, the LH showed significantly lower activity in the anterior cingulate (-6 +/- 2%) and insular cortexes (-9 +/- 4%) during I-HG. These findings suggest that cardiovascular responses elicited during imagined exercise involve central activation of insular and anterior cingulate cortexes, independent of muscle afferent feedback; these structures appear to have key roles in the central modulation of cardiovascular responses.  相似文献   

6.
The purpose of this investigation was to determine whether central command activated regions of the insular cortex, independent of muscle metaboreflex activation and blood pressure elevations. Subjects (n = 8) were studied during 1) rest with cuff occlusion, 2) static handgrip exercise (SHG) sufficient to increase mean blood pressure (MBP) by 15 mmHg, and 3) post-SHG exercise cuff occlusion (PECO) to sustain the 15-mmHg blood pressure increase. Data were collected for heart rate, MBP, ratings of perceived exertion and discomfort, and regional cerebral blood flow (rCBF) by using single-photon-emission computed tomography. When time periods were compared when MBP was matched during SHG and PECO, heart rate (7 +/- 3 beats/min; P < 0.05) and ratings of perceived exertion (15 +/- 2 units; P < 0.05) were higher for SHG. During SHG, there were significant increases in rCBF for hand sensorimotor (9 +/- 3%), right inferior posterior insula (7 +/- 3%), left inferior anterior insula (8 +/- 2%), and anterior cingluate regions (6 +/- 2%), not found during PECO. There was significant activation of the inferior (ventral) thalamus and right inferior anterior insular for both SHG and PECO. Although prior studies have shown that regions of the insular cortex can be activated independent of mechanoreflex input, it was not presently assessed. These findings provide evidence that there are rCBF changes within regions of the insular and anterior cingulate cortexes related to central command per se during handgrip exercise, independent of metaboreflex activation and blood pressure elevation.  相似文献   

7.
The purpose of this study was to test the general hypothesis that sympathoinhibitory cardiopulmonary baroreflexes modulate sympathetic outflow during voluntary exercise in humans. Direct (microneurographic) measurements of postganglionic sympathetic nerve activity to noncontracting muscle (MSNA) were made from the right peroneal nerve in the leg, and arterial pressure (AP) and heart rate (HR) were recorded in 10 healthy subjects before (control) and for 2.5 min during each of five interventions: 1) lower-body negative pressure at -10 mmHg (LBNP) alone, 2 and 3) isometric handgrip exercise at 15 and 30% of maximal voluntary contraction (MVC) alone, and 4 and 5) handgrip at 15 and 30% MVC performed during LBNP. During LBNP alone, which should have reduced cardiopulmonary baroreflex sympathoinhibition, AP and HR did not change from control, but MSNA increased 93 +/- 24% (P less than 0.05). Handgrip elicited contraction intensity-dependent increases in AP and HR (P less than 0.05), but MSNA increased above control only at the 30% MVC level (165 +/- 30%, P less than 0.05). The HR, AP, and MSNA responses to either level of handgrip performed during LBNP were not different from the algebraic sums of the corresponding responses to handgrip and LBNP performed separately (P greater than 0.05). Since there was no facilitation of the MSNA response to handgrip when performed during LBNP compared with algebraic sums of the separate responses, our results do not support the hypothesis that cardiopulmonary baroreflexes modulate (inhibit) sympathetic outflow during exercise in humans.  相似文献   

8.
Cerebral blood flow during static exercise in humans   总被引:3,自引:0,他引:3  
Cerebral blood flow (CBF) was determined in humans at rest and during four consecutive unilateral static contractions of the knee extensors. Each contraction was maintained for 3 min 15 s with the subjects in a semisupine position. The contractions corresponded to 8, 16, 24, and 32% of the maximal voluntary contraction (MVC) and utilized alternate legs. CBF (measured by the 133Xe clearance technique) was expressed by a noncompartmental flow index (ISI). Heart rate and mean arterial pressure increased from resting values of 73 (55-80) beats/min and 88 (74-104) mmHg to 106 (86-138) beats/min and 124 (102-146) mmHg, respectively (P less than 0.0005), during the contraction at 32% MVC. Arterial PCO2 and central venous pressure did not change. Corrected to the average resting PCO2, CBF during control was 55 (35-73) ml.100 g-1.min-1 and remained constant during contractions. Cerebral vascular resistance increased from 1.5 (1.0-2.2) to 2.4 (1.4-3.0) mmHg. 100 g.min.ml-1 (P less than 0.025) at 32% of MVC. There was no difference in CBF between the two hemispheres at rest or during exercise. In contrast to dynamic leg exercise, static leg exercise is not associated with an increase in global CBF when measured by the 133Xe clearance technique.  相似文献   

9.
Regional blood flows and cardiac hemodynamics were studied in 3 models of hypertensive rats: one-kidney DOC-saline, one-kidney, one-clip and two-kidney, one-clip hypertension and in normotensive control rats. All hypertensive models were characterized by increased peripheral vascular resistance and normal cardiac output. Coronary and cerebral blood flows varied among the hypertensive models but did not significantly differ from the normotensive rats. However, coronary blood flow of one-kidney, one-clip rats (8.4 +/- 1.3 ml X min-1 X g-1) was significantly higher than that of the two-kidney one-clip rats (6.5 +/- 1.2 ml X min.-1 X g-1, P less than 0.05). Cerebral blood flow of DOC-saline rats was lower than that of two-kidney one-clip or one-kidney one-clip renovascular rats. Renal blood flows of the unclipped kidney of two-kidney renovascular rats (3.77 +/- 0.85 ml X min-1 X g-1) and DOC-saline rats (2.95 +/- 0.83 ml X min-1 X g-1) were significantly lower than those of normotensive rats (5.92 +/- 1.16 ml X min-1 X g-1, P less than 0.05). In conclusion, although vascular resistance becomes elevated in all models of experimental hypertension, regional vascular resistance and blood flow distribution may differ depending on the vasoconstrictor mechanisms that participate in each model.  相似文献   

10.
Previous studies suggest that women experience less vascular occlusion than men when generating the same relative contractile force. This study examined forearm blood flow (FBF) in women and men during isometric handgrip exercise requiring the same relative force. Thirty-eight subjects [20 women and 18 men, 22.8 +/- 0.6 yrs old (means +/- SE)] performed low- and moderate-force handgrip exercise on two occasions. Subjects performed five maximum voluntary contractions (MVC) before exercise to determine 20% and 50% MVC target forces. Time to task failure (TTF) was determined when the subject could not maintain force within 5% of the target force. Mean blood velocity was measured in the brachial artery with the use of Doppler ultrasonography. Arterial diameter was measured at rest and used to calculate absolute FBF (FBFa; ml/min) and relative FBF (FBFr; ml.min(-1).100 ml(-1)). Women generated less (P < 0.05) absolute maximal force (208 +/- 10 N) than men (357 +/- 17 N). The TTF was longer (P < 0.05) at 20% MVC for women (349 +/- 32 s) than for men (230 +/- 23 s), but no difference between the sexes was observed at 50% MVC (women: 69 +/- 5 s; men: 71 +/- 8 s). FBFa and FBFr increased (P < 0.05) from rest to TTF in both women and men during 20% and 50% MVC trials. FBFr was greater in women than in men at > or =30% TTF during 50% MVC. At exercise durations > or =60% of TTF, FBFa was lower (P < 0.05) in women than in men during handgrip at 20% MVC. Despite the longer exercise duration for women at the lower contraction intensity, FBFr was similar between the sexes, suggesting that muscle perfusion is matched to the exercising muscle mass independent of sex.  相似文献   

11.
Previous studies of muscle sympathetic nerve activity (MSNA) during static exercise have employed predominantly the arms. These studies have revealed striking increases in arm and leg MSNA during static handgrip (SHG) and postexercise circulatory arrest (PECA). The purpose of this study was to examine MSNA during static leg exercise (SLE) at intensities and duration commonly used during SHG followed by PECA. During 2 min of SLE (static knee extension) at 10% of maximal voluntary contraction (MVC; n = 18) in the sitting position, mean arterial pressure and heart rate increased significantly. Surprisingly, MSNA in the contralateral leg did not increase above control levels during SLE but rather decreased (23 +/- 5%; P < 0.05) during the 1st min of SLE at 10% MVC. We compared MSNA responses to SHG and SLE (n = 8) at 30% MVC. SHG and SLE elicited comparable increases (P < 0.05) in arterial pressure and heart rate, but SHG elicited significant increases in MSNA, whereas SLE did not. During PECA after SHG and SLE, mean arterial pressure remained significantly above control. However, MSNA was unchanged during PECA after SLE but was significantly greater than control during PECA after SHG. Because previous studies have indicated differences in MSNA responses to the arm and leg, we measured arm and leg MSNA simultaneously in six subjects during SLE at 20% MVC and PECA. During SLE and PECA, MSNA in the contralateral arm and leg did not differ significantly from each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The influence of aerobic capacity on the cardiovascular response to handgrip exercise, in relation to the muscle mass involved in the effort, was tested in 8 trained men (T) and 17 untrained men (U). The subjects performed handgrip exercises with the right-hand (RH), left-hand (LH) and both hands simultaneously (RLH) at an intensity of 25% of maximal voluntary contraction force. Maximal aerobic capacity was 4.3 l.min-1 in T and 3.21 l.min-1 in U (P less than 0.01). The endurance time for handgrip was longer in T than in U by 29% (P less than 0.05) for RH, 38% (P less than 0.001) for LH and 24% (P less than 0.001) for RLH. Heart rate (fc) was significantly lower in T than in U before handgrip exercise, and showed smaller increases (P less than 0.01) at the point of exhaustion: 89 vs 106 beats.min-1 for RH, 93 vs 100 beats.min-1 for LH and 92 vs 108 beats.min-1 for RLH. Stroke volume (SV) at rest was greater in T than in U and decreased significantly (P less than 0.05) during handgrip exercise in both groups of subjects. At the point of exhaustion SV was still greater in T than in U: 75 vs 57 ml for RH, 76 vs 54 ml for LH and 76 vs 56 ml for RLH. During the last seconds of handgrip exercise, the left ventricular ejection time was longer in T than in U. Increases in cardiac output (Qc) and systolic blood pressure did not differ substantially between T and U, nor between the handgrip exercise tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Eight healthy adult grade ponies were studied at rest as well as during maximal exertion carried out with and without adenosine infusion (3 microM X kg-1 X min-1 into the pulmonary artery) on a treadmill to compare levels of blood flow in respiratory muscles with those in other vigorously working muscles and to ascertain whether there remained any unutilized vasodilator reserve in respiratory muscles of maximally exercising ponies. Radionuclide-labeled 15-micron-diam microspheres, injected into the left ventricle, were used to study tissue blood flows. During maximal exertion, there were increases above base-line values in heart rate (336%), mean aortic pressure (41%), cardiac output (722%), and arterial O2 content (56%). The whole-body O2 consumption was 123 +/- 11 ml X min-1 X kg-1, and the stride/respiratory frequency of the galloping ponies was 138 +/- 4/min. With adenosine infusion during maximal exertion, mean aortic pressure decreased (P less than 0.05), but none of the above variables was different from maximal exercise alone. During maximal exertion, blood flow in the adrenal glands, myocardium, respiratory, and limb muscles increased, whereas that in the kidneys decreased and the cerebral perfusion remained unaltered. With adenosine infusion during maximal exercise, renal vasoconstriction intensified, whereas adrenal and coronary beds exhibited further vasodilatation. During maximal exertion, blood flow in the equine diaphragm (265 +/- 36 ml X min-1 X 100 g-1) was not different from that in the gluteus medius (253 +/- 36) and biceps femoris (233 +/- 29); both are principal muscles of propulsion in the equine subjects) or the triceps brachii (227 +/- 26) muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Myocardial oxygen consumption (MVO2) and coronary blood flow (CBF) distribution were studied in 21 isolated, metabolically supported dog hearts. Measurements of MVO2 and CBF distribution were carried out in three different experimental conditions : empty beating heart (EBH), ventricular fibrillation (VF) and high potassium-induced cardiac arrest (CA). MVO2 was approximately the same in EBH and VF (4.09 +/- 0.77 and 4.28 +/- 0.68 ml O2 min-1 100 g-1 respectively), and significantly lower in the group with CA (2.40 +/- 0.18 ml O2 min-1 100 g-1, P less than 0.05). Total CBF showed no significant differences among the three groups (84 +/- 7 ml/min in EBH; 78 +/- 7 ml/min in VF and 83 +/- 7 ml/min in CA). Subendocardial CBF per unit of tissue mass was significantly lower in hearts with VF (0.43 +/- 0.01 ml/min-1 g-1, P less than 0.05) when tested against the other two groups of experiments (0.69 +/- 0.03 ml min-1 g-1 in EBH and 0.65 +/- +/- 0.04 ml min-1 g-1 in CA). This was also reflected in the endo/epi ratio, that was significantly lower in VF (1.41 +/- 0.07, P less than 0.05) with respect to the other two groups (2 +/- 0.09 in EBH and 2.21 +/- 0.07 in CA). From data presented here we can conclude that cardioplegia, even in absence of hypothermia, is a method that will assure myocardial protection providing : (1) a lower subendocardial MVO2; (2) a higher subendocardial CBF, which helps for a prompt recovery during reperfusion.  相似文献   

15.
Sympathetic neural discharge and vascular resistance during exercise in humans   总被引:10,自引:0,他引:10  
The purpose of this study was to determine the relationship between changes in efferent muscle sympathetic nerve activity (MSNA) to the lower leg and calf vascular resistance (CVR) during isometric exercise in humans. We made intraneural (microneurographic) determinations of MSNA in the right leg (peroneal nerve) while simultaneously measuring calf blood flow to the left leg, arterial pressure, and heart rate in 10 subjects before (control), during, and after (recovery) isometric handgrip exercise performed for 2.5 min at 15, 25, and 35% of maximal voluntary contraction (MVC). Heart rate and arterial pressure increased above control within the initial 30 s of handgrip at all levels, and the magnitudes of the increases at end contraction were proportional to the intensity of the exercise. In general, neither MSNA nor CVR increased significantly above control levels during handgrip at 15% MVC. Similarly, neither variable increased above control during the initial 30 s of handgrip at 25 and 35% MVC; however, during the remainder of the contraction period, progressive, parallel increases were observed in MSNA and CVR (P less than 0.05). The correlation coefficients relating changes in MSNA to changes in CVR for the individual subjects averaged 0.63 +/- 0.07 (SE) (range 0.30-0.91) and 0.94 +/- 0.06 (range 0.80-0.99) for the 25 and 35% MVC levels, respectively. During recovery, both MSNA and CVR returned rapidly toward control levels. These findings demonstrate that muscle sympathetic nerve discharge and vascular resistance in the lower leg are tightly coupled during and after isometric arm exercise in humans. Furthermore, the exercise-induced adjustments in the two variables are both contraction intensity and time dependent.  相似文献   

16.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide (NO). An inhibitor of NO formation, N omega-nitro-L-arginine (LNA, 100 micrograms/kg i.v.), was given to conscious sheep (n = 6) during normoxia and again in hypocapnic hypoxia (arterial PO2 approximately 38 Torr). Blood samples were obtained from the aorta and sagittal sinus, and cerebral blood flow (CBF) was measured with 15-microns radiolabeled microspheres. During normoxia, LNA elevated (P < 0.05) mean arterial pressure from 82 +/- 3 to 88 +/- 2 (SE) mmHg and cerebral perfusion pressure (CPP) from 72 +/- 3 to 79 +/- 3 mmHg, CBF was unchanged, and cerebral lactate release (CLR) rose temporarily from 0.0 +/- 1.9 to 13.3 +/- 8.7 mumol.min-1 x 100 g-1 (P < 0.05). The glucose-O2 index declined (P < 0.05) from 1.67 +/- 0.16 to 1.03 +/- 0.4 mumol.min-1 x 100 g-1. Hypoxia increased CBF from 59.9 +/- 5.4 to 122.5 +/- 17.5 ml.min-1 x 100 g-1 and the glucose-O2 index from 1.75 +/- 0.43 to 2.49 +/- 0.52 mumol.min-1 x 100 g-1 and decreased brain CO2 output, brain respiratory quotient, and CPP (all P < 0.05), while cerebral O2 uptake, CLR, and CPP were unchanged. LNA given during hypoxia decreased CBF to 77.7 +/- 11.8 ml.min-1 x 100 g-1 and cerebral O2 uptake from 154 +/- 22 to 105.2 +/- 12.4 mumol.min-1 x 100 g-1 and further elevated mean arterial pressure to 98 +/- 2 mmHg (all P < 0.05), CLR was unchanged, and, surprisingly, brain CO2 output and respiratory quotient were reduced dramatically to negative values (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In animal studies, sympathetically mediated coronary vasoconstriction has been demonstrated during exercise. Human studies examining coronary artery dynamics during exercise are technically difficult to perform. Recently, noninvasive transthoracic Duplex ultrasound studies demonstrated that 1) patients with left internal mammary artery (LIMA) grafts to the left anterior descending artery can be imaged and 2) the LIMA blood flow patterns are similar to those seen in normal coronary arteries. Accordingly, subjects with LIMA to the left anterior descending artery were studied during handgrip protocols as blood flow velocity in the LIMA was determined. Beat-by-beat analysis of changes in diastolic coronary blood flow velocity (CBV) was performed in six male clinically stable volunteers (60 +/- 2 yr) during two handgrip protocols. Arterial blood pressure (BP) and heart rate (HR) were also measured, and an index of coronary vascular resistance (CVR) was calculated as diastolic BP/CBV. Fatiguing handgrip performed at [40% of maximal voluntary contraction (MVC)] followed by circulatory arrest did not evoke an increase in CVR (P = not significant). In protocol 2, short bouts of handgrip (15 s) led to increases in CVR (18 +/- 3% at 50% MVC and 20 +/- 8% at 70% MVC). BP was also increased during handgrip. Our results reveal that in conscious humans, coronary vasoconstriction occurs within 15 s of onset of static handgrip at intensities at or greater than 50% MVC. These responses are likely to be due to sympathetic vasoconstriction of the coronary circulation.  相似文献   

19.
To investigate how the sweating response to a sustained handgrip exercise depends on changes in the exercise intensity, the sweating response to exercise was measured in eight healthy male subjects. Each subject lay in the supine position in a climatic chamber (35 degrees C and 50% relative humidity) for approximately 60 min. This exposure caused sudomotor activation by increasing skin temperature without a marked change in internal temperature. After this period, each subject performed isometric handgrip exercise [15, 30, 45, and 60% maximal voluntary contraction (MVC)] for 60 s. Although esophageal and mean skin temperatures did not change with a rise in exercise intensity and were similar at all exercise intensities, the sweating rate (SR) on the forearm increased significantly (P < 0.05) from baseline (0.094 +/- 0.021 mg. cm(-2). min(-1) at 30% MVC, 0.102 +/- 0.022 mg. cm(-2). min(-1) at 45% MVC, 0.059 +/- 0.009 mg. cm(-2). min(-1) at 60% MVC) in parallel with exercise intensity above exercise intensity at 30% MVC (0.121 +/- 0.023 mg. cm(-2). min(-1) at 30% MVC, 0.242 +/- 0.051 mg. cm(-2). min(-1) at 45% MVC, 0.290 +/- 0.056 mg. cm(-2). min(-1) at 60% MVC). Above 45% MVC, SR on the palm increased significantly from baseline (P < 0.05). Although SR on the forearm and palm tended to increase with a rise in exercise intensity, there was a difference in the time courses of SR between sites. SR on the palm showed a plateau after abrupt increase, whereas SR on the forearm increased progressively during exercise. These results suggest that the increase in SR with the increase in sustained handgrip exercise intensity is due to nonthermal factors and that the magnitude of these factors during the exercise may be responsible for the magnitude of SR.  相似文献   

20.
The physiological response to continuous and intermittent handgrip exercise was evaluated. Three experiments were performed until exhaustion at 25% of maximal voluntary contraction (MVC): experiment 1, continuous handgrip (CH) (n = 8); experiment 2, intermittent handgrip with 10-s rest pause every 3 min (IH) (n = 8); and experiment 3, as IH but with electrical stimulation (ES) of the forearm extensors in the pauses (IHES) (n = 4). Before, during, and after exercise, recordings were made of heart rate (HR), arterial blood pressure (BP), exercising forearm blood flow, and concentrations of potassium [K+] and lactate [La-] in venous blood from both arms. The electromyogram (EMG) of the exercising forearm extensors and perceived exertion were monitored during exercise. Before and up to 24 h after exercise, observations were made of MVC, of force response to electrical stimulation and of the EMG response to a 10-s test contraction (handgrip) at 25% of the initial MVC. Maximal endurance time (tlim) was significantly longer in IH (23.1 min) than in CH (16.2 min). The ES had no significant effect on tlim. During exercise, no significant differences were seen between CH and IH in blood flow, venous [K+] and [La-], or EMG response. The HR and BP increased at the same rate in CH and IH but, because of the longer duration of IH, the levels at exhaustion were higher in this protocol. The subjects reported less subjective fatigue in IH. During recovery, return to normal MVC was slower after CH (24 h) than after IH (4 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号