首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuromuscular junction is one of the most accessible mammalian synapses which offers a useful model to study long-term synaptic modifications occurring throughout life. It is also the natural target of botulinum neurotoxins (BoNTs) causing a selective blockade of the regulated exocytosis of acetylcholine thereby triggering a profound albeit transitory muscular paralysis. The scope of this review is to describe the principal steps implicated in botulinum toxin intoxication from the early events leading to a paralysis to the cellular response implementing an impressive synaptic remodelling culminating in the functional recovery of neuromuscular transmission. BoNT/A treatment promotes extensive sprouting emanating from intoxicated motor nerve terminals and the distal portion of motor axons. The current view is that sprouts have the ability to form functional synapses as they display a number of key proteins required for exocytosis: SNAP-25, VAMP/synaptobrevin, syntaxin-I, synaptotagmin-II, synaptophysin, and voltage-activated Na+, Ca2+ and Ca2+-activated K+ channels. Exo-endocytosis was demonstrated (using the styryl dye FM1-43) to occur only in the sprouts in vivo, at the time of functional recovery emphasising the direct role of nerve terminal outgrowth in implementing the restoration of functional neurotransmitter release (at a time when nerve stimulation again elicited muscle contraction). Interestingly, sprouts are only transitory since a second distinct phase of the rehabilitation process occurs with a return of synaptic activity to the original nerve terminals. This is accompanied by the elimination of the dispensable sprouts. The growth or elimination of these nerve processes appears to be strongly correlated with the level of synaptic activity at the parent terminal. The BoNT/A-induced extension and later removal of "functional" sprouts indicate their fundamental importance in the rehabilitation of paralysed endplates, a finding with ramifications for the vital process of nerve regeneration.  相似文献   

2.
A light microscopy morphometric study was performed in singly innervated synaptic areas of the triangularis sterni muscle of the normal adult Swiss mouse. Investigating mechanisms of the motor nerve growth control, we tested the hypothesis that significant differences in the nerve terminal branching pattern can be detected between different populations of nerve endings classified according to their arborization complexity or size. The main observations of this morphometric study are first, that the mean segment length of the terminal arborization between branch points behaves as an independent variable from the remaining parameters; the mean value of this parameter did not change in nerve endings of differing size and complexity. Secondly, the increase in size of the nerve endings is accompanied by a significant reduction in the mean length of the distal free-end segments. Results are discussed in the context of the possible regulatory mechanisms governing nerve terminal growth and remodelling.  相似文献   

3.
Partial denervation or paralysis of adult skeletal muscle is followed by nerve sprouting, probably due to release of diffusible sprout-inducing activity by inactive muscle. Insulin-like growth factors (IGF1 and IFG2) are candidates for muscle-derived sprouting activity, because (a) they induce neurite growth from peripheral neurons in vitro; and (b) their mRNA levels in adult skeletal muscle increase severalfold after denervation or paralysis. We sought to determine whether the presence of elevated levels of IGFs in innervated adult skeletal muscle was sufficient to produce intramuscular nerve growth. Low concentrations of IGFs induced massive neurite growth from enriched embryonic chick motoneurons in vitro. Half-maximal responses required 0.2 nM IGF2 or IGF1, or 20 nM insulin. Similar hormone binding properties of motoneuron processes in vitro were observed. Exposure of adult rat or mouse gluteus muscle in vivo to low quantities of exogenous IGF2 or IGF1 led to intramuscular nerve sprouting. Numbers of sprouts in IGF-exposed muscles were 10-fold higher than in vehicle-exposed or untreated muscles, and 12.2% of the end plates in IGF-exposed muscle (control: 2.7%) had sprouts growing from them. The nerve growth reaction was accompanied by elevated levels of intramuscular nerve-specific growth-associated protein GAP43. Additional properties of IGF-exposed muscle included modest proliferation of interstitial cells and elevated interstitial J1 immunoreactivity. These results suggest that elevated levels of IGFs in denervated or paralyzed muscle might trigger coordinate regenerative reactions, including nerve sprouting and expression of nerve growth-supporting substrate molecules by activated interstitial cells.  相似文献   

4.
Summary Partial denervation of the sternocostalis muscle was achieved by sectioning two out of five of its intercostal nerves. The terminal sprouting response was markedly increased compared to that found following section of only one nerve. The increase in the response was greater for B type than for C type end plates, although B type end plates appear unable to produce terminal sprouts longer than 20 m after partial denervation.Double nerve section allowed terminal sprouts from C type end plates to increase in length up to three days, after which time they appeared to retract. It is postulated that the onset of collateral sprouting resulted in reinnervation of empty end plate sites and hence removed the target for terminal sprouts.  相似文献   

5.
In partially denervated rodent muscle, terminal Schwann cells (TSCs) located at denervated end plates grow processes, some of which contact neighboring innervated end plates. Those processes that contact neighboring synapses (termed "bridges") appear to initiate nerve terminal sprouting and to guide the growth of the sprouts so that they reach and reinnervate denervated end plates. Studies conducted prior to knowledge of this potential involvement of Schwann cells showed that direct muscle stimulation inhibits terminal sprouting following partial denervation (Brown and Holland, 1979). We have investigated the possibility this inhibition results from an alteration in the growth of TSC processes. We find that stimulation of partially denervated rat soleus muscle does not alter the length or number of TSC processes but does reduce the number of TSC bridges. Stimulation also reduces the number of TSC bridges that form between end plates during reinnervation of a completely denervated muscle. The nerve processes ("escaped fibers") that normally grow onto TSC processes during reinnervation are also reduced in length. Therefore, stimulation alters at least two responses to denervation in muscles: (1) the ability of TSC processes to form or maintain bridges with innervated synaptic sites, and (2) the growth of axons along processes extended by TSCs.  相似文献   

6.
A silver impregnation method and a morphometric approach were used to define differences existing in the motor nerve terminal branching pattern between a fast-twitch muscle (extensor digitorum longus) and a slow-twitch one (soleus) of the normal adult rat. Because no single measure can describe precisely all geometrical properties (ie both topology and metrics) of the nerve terminals, we evaluated morphologic parameters defining length and angular characteristics in the different terminal segments classified according to their centrifugal order. The main results indicate that the distal free-end segments in the extensor digitorum longus muscle are shorter and less divergent than in the soleus nerve terminals. The endings in the two muscles have different fractal dimensions. Findings are discussed in the context of the hypothetical mechanisms governing motor nerve terminal size and complexity.  相似文献   

7.
This study aimed to generate a probe for perisynaptic Schwann cells (PSCs) to investigate the emerging role of these synapse-associated glial cells in the formation and maintenance of the neuromuscular junction (NMJ). We have obtained a novel monoclonal antibody, 2A12, which labels the external surface of PSC membranes at the frog NMJ. The antibody reveals PSC fine processes or “fingers” that are interposed between nerve terminal and muscle membrane, interdigitating with bands of acetylcholine receptors. This antibody also labels PSCs at the avian neuromuscular junction and recognizes a 200 kDa protein in Torpedo electric organs. In frog muscles, axotomy induces sprouting of PSC processes beyond clusters of acetylcholine receptors and acetylcholinesterase at denervated junctional branches. PSC branches often extend across several muscle fibers. At some junctions, PSC sprouts join the tips of neighboring branches. The average length of PSC sprouts is approximately 156 µ at 3-week denervated NMJs. PSC sprouting is accompanied by a significant increase in the number of Schwann cell bodies per NMJ. Following nerve regeneration, nerve terminals reinnervate the junction along the PSC processes. In vivo observations of normal frog muscles also show PSC processes longer than nerve terminals at some junctional branches. The results suggest that nerve injury induces profuse PSC sprouting that may play a role in guiding nerve terminal regeneration at frog NMJs. In addition, antibody 2A12 reveals the fine morphology of PSCs in relation to other synaptic elements and is a useful probe in elucidating the function of these synapse-associated glial cells in vivo.  相似文献   

8.
The retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase extracellularly injected into a leg muscle was used to identify the regenerating cockroach motor neurons that have grown an axonal branch into that muscle. At least 66% of the animals with crushed nerve roots eventually reform the original innervation pattern of this muscle with no mistakes. In spite of this apparent specificity the cockroach neuromuscular system can express plasticity as evidenced by the correction of mistakes made at early stages of regeneration. These mistakes are corrected through elimination during the time interval between 40 and 60 days after nerve crush. In addition, when the distal segments of the leg are removed, thus depriving some motor neurons of their normal target muscles, many of them form stable inappropriate axonal branches in denervated as well as fully innervated muscles. These observations are discussed in terms of possible mechanisms responsible for the specificity of the cellular interactions and in terms of their relevance to understanding the development of vertebrate neuromuscular systems.  相似文献   

9.
Motor innervation and particularly the structure of motor end plates (MEPs) was studied in the extraocular muscles of the lamprey, Lampetra fluviatilis L., by light and electron microscopy. Each muscle is supplied with numerous thin motor nerve fibres. Motor end plates are located at their ends or along their course. Two motor end plate types were distinguished: en grappe-like plates with a low acetylcholinesterase (AChE) activity were observed on thin muscle fibres, whilst en plaque-like plates with a high AChE activity were found on thick mitochondria-rich and thick multifibrillar muscle fibres. The postsynaptic membrane of the former MEP type does not show the presence of infoldings, MEPs located on thick mitochondria-rich fibres show occasional infoldings, whereas the postsynaptic membrane of MEPs present on thick multifibrillar fibres reveals numerous infoldings. Motor end plates present in the extraocular muscles in the lamprey possess features typical for higher vertebrates and elasmobranch fishes, as well as for Tunicata.  相似文献   

10.
Summary The sternocostalis muscle of the rat was examined at one to five days after partial denervation and levels of terminal sprouting were assessed.The removal of one intercostal nerve caused localised degeneration which did not extend more than a few muscle fibres deep into the field of distribution of the adjacent nerve. Terminal sprouting was clearly seen at 24 h after operation and did not appear to develop further up to five days.There was no difference in the sprouting responses to section of either intercostal nerve 2, 4 or 5. There was, however, a decrease in the response with increasing distance from the cut nerve. No sprouting response was observed in the contralateral muscle.Comparison of sprouting levels of B and C type end plates revealed a greater percentage of C type end plates with sprouts. However, the response of B type end plates, considered in relation to the levels of spontaneous sprouting, was greater than that of C type end plates.  相似文献   

11.
Soleus muscles in the rat were freely grafted alongside a normal soleus muscle in the absence of mechanical trauma to any of the surrounding muscles or motor nerves. The object of this experiment was to determine whether or not the muscle grafts would become reinnervated under these circumstances. Contractile and histochemical properties of the grafts were compared with those of the contralateral denervated soleus as well as normal muscles. Innervation of the grafts did occur, and it was concluded that the innervation of the grafts arose primarily from sprouts from nerves supplying neighboring muscles. The grafts were studied with specific nerve stains, histochemical techniques and by analysis of their contractile properties.  相似文献   

12.
To determine the effects of nerve explants on the integrity of motor end plates in vitro, cholinesterase activity and structure of end plates were compared in newt muscle denervated in vivo, cultured in the absence of nerve explants, and cultured in the presence of sensory ganglia. In neuromuscular junctions denervated in vivo or in vitro, the synaptic vesicles become clumped and fragmented. A few intact vesicles escape into the synaptic cleft. Axon terminals degenerate until they are left as residual bodies within the Schwann cell cytoplasm. Junctional folds on the muscle surface are reduced in height and are no longer evident once traces of axoplasm within the Schwann cell disappear. End plate cholinesterase activity is reduced as junctional folds are lost. When muscle is cultured in the presence of a sensory ganglion, the terminal axoplasm degenerates in the same manner but junctional folds persist on the muscle surface. Moderately intense cholinesterase activity remains in association with the junctional folds, so that normal motor end plates are maintained in the absence of innervation. These results show that degenerative changes in the structure of the motor end plate and loss of cholinesterase activity occurring in organ culture as a result of denervation can be retarded by nerve explants that do not directly innervate the muscle.  相似文献   

13.
Motor end-plate disease (med) in the mouse is an hereditary defect of the neuromuscular system, with partial functional denervation and muscle inactivity in late stages of the disease. Motor end-plate disease is characterized by an intense ultraterminal sprouting of the motor nerves from swollen nerve terminal branches in the soleus muscle. At the ultrastructural level, the neuromuscular junctions extend to very wide territories, often outside the original motor end-plate, in regions where the nerve sprouts are in simple apposition to the muscle fiber, with no secondary synaptic folds. The nerve terminals are rich in neurofilaments and poor in synaptic vesicles.Freeze fracture analysis of the pre-synaptic and post-synaptic membrane specializations fails to reveal any important structural alteration which could suggest a defect in acetylcholine release or in muscle membrane excitability. However, the non-junctional sarcolemmal specializations (the so-called ‘square arrays’) arc found with a frequency slightly higher than in normal muscle.The nerve abnormalities at the neuromuscular junction may be either a consequence of muscle inactivity or the morphological expression of some primary nerve abnormality. Further studies of the soleus muscle at early stages of the disease may provide evidence in favor of either possibility.  相似文献   

14.
A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development.  相似文献   

15.
Autotomy is a process in grasshoppers whereby one or both hindlimbs can be shed to escape a predator or can be abandoned if damaged. It occurs between the trochanter and the femur (second and third leg segments) and once lost, the legs never regenerate. Autotomy severs branches of the leg nerve (N5) but damages no muscles since none span the autotomy plane. We find, however, that undamaged muscles intrinsic to the thorax of grasshoppers, Barytettix psolus, atrophy to less than 15% of their normal mass after autotomy of a hindlimb. These muscles operate the coxa and trochanter (first and second leg segments) and are innervated by branches of nerves 3 and 4; nerve branches that are not damaged by autotomy. Atrophy is localized to the side and body segment where autotomy occurs. Atrophy is evident 7-10 days after loss of a limb, is complete by about 30 days, and follows a similar time course whether induced in young adult, or sexually mature grasshoppers. During autotomy, leg nerve 5 is served distal to the trochanter, the thoracic muscles lose their normal static and dynamic load, and these muscles are subsequently no longer used to support the weight of the insect during posture and locomotion. Experimental loading and unloading of the affected muscles, and cutting of nerves indicated that it is the severing of leg nerve 5 during autotomy that transneuronally induces muscle atrophy.  相似文献   

16.
The neuromuscular organization of feline anterior sartorius was examined using three experimental approaches. First, the branching pattern of the nerve supplying anterior sartorius was inspected in muscles taken from a large number of feline cadavers. All muscles were found to be supplied by two major nerve branches, one directed proximally and the other directed distally, and most muscles (42/51) had a third distinct branch that entered the muscle centrally. Second, the motoneuronal populations supplying the three nerve branches were investigated by electrophysiological techniques. Motoneurons that supplied axons to the distally-directed branch did not appear to have collaterals in more proximally-located branches. In contrast, other motoneurons supplying the proximally-directed branch also appeared to supply axon collaterals to the centrally-directed branch. This result suggested that the motoneuronal population of the distally-directed branch was largely separate from that supplying the proximally- and centrally-directed branches. Third, the motor unit territories supplied by different nerve branches were mapped using glycogen-depletion methods. Muscle fibers supplied by the distally-directed nerve branch were mostly distributed to the medial portion of anterior sartorius, whereas the fibers supplied by the other two branches were generally found more anteriorly. Further, the muscle fibers supplied by an individual nerve branch were present in greater numbers at the end of the muscle closest to the entry point of that branch. Thus, the motor units supplied by discrete nerve branches were found to be distributed asymmetrically within anterior sartorius, but were arranged neither strictly in-parallel nor strictly in-series.  相似文献   

17.
Summary The three-dimensional organization of the motor end plates in the red, white and intermediate striated muscle fibers of the rat intercostal muscle was observed under a field-emission type scanning electron microscope after removal of connective tissue components by HCl hydrolysis.The motor endplate of the white fiber had terminal branches (or axon terminals), which were large, long and thin, and small but numerous nerve swellings (or terminal boutons). The motor endplate of the red fiber had terminal branches, which were small, short and thick, and had large but fewer nerve swellings. The motor endplate of the intermediate fiber was intermediate in size and structure between these two. In detached nerve-ending preparations, primary synaptic grooves with slit-like openings of the junctional folds appeared on the surface of the muscle fibers. The primary synaptic grooves were more developed in the white fiber than in the red fiber, and they were intermediate in the intermediate fiber. The numerical ratio of slit-like openings was 11.83.5 in the red, intermediate and white fiber, respectively.The Schwann cells and their processes were observed on the surface of the motor endplate, with the processes covering the upper orifices of the primary synaptic grooves and sealing the terminal branches. The number of Schwann cells was usually three in the white fiber, two in the intermediate fiber and one in the red fiber.  相似文献   

18.
An identified serotonergic neuron (C1) in the cerebral ganglion of Helisoma trivolvis sprouts following axotomy and rapidly (seven to eight days) regenerates to recover its regulation of feeding motor output from neurons of the buccal ganglia. The morphologies of normal and regenerated neurons C1 were compared. Intracellular injection of the fluorescent dye, Lucifer Yellow, into neuron C1 was compared with serotonin immunofluorescent staining of the cerebral and buccal ganglia. The two techniques revealed different and complimentary representations of the morphology of neuron C1. Lucifer Yellow provided optimal staining of the soma, major axon branches, and dendritic arborization. Immunocytochemical staining revealed terminal axon branches on distant targets and showed an extensive plexus of fine fibers in the sheaths of ganglia and nerve trunks. In addition to C1, serotonin-like immunoreactivity was localized in approximately 30 other neurons in each of the paired cerebral ganglia. Only cerebral neurons C1 had axons projecting to the buccal ganglia. No neuronal somata in the buccal ganglia displayed serotonin-like immunoreactivity. Observations of regenerating neurons C1 demonstrated: Actively growing neurites, both in situ and in cell culture, displayed serotonin-like immunoreactivity; severed distal axons of C1 retained serotonin-like immunoreactivity for up to 28 days; axotomized neurons C1 regenerated to restore functional control over the feeding motor program.  相似文献   

19.
Six extraocular muscles of the grass snake, Natrix natrix L. together with their motor end plates were examined in the light and electron microscope, and the measurements of the diameter of muscle fibres and the area of their motor end plates were performed. Morphologically, two types of muscle fibres: tonic and red phase ones were distinguished. The former fibres, 2,3 to 14,5 mum in diameter possess single or multiple (up to five on a single fibre) "en grappe" motor end plates, without postsynaptic junctional folds. The latter fibres, 10...40 mum in diameter have single, "en plaque" motor end plates, with numerous postsynaptic junctional infoldings. The morphological features of muscle fibres and motor end plates as well as the correlation between the diameter of muscle fibres and the area of motor end plates are discussed.  相似文献   

20.
M Rich  J W Lichtman 《Neuron》1989,3(6):677-688
The fate of nerve terminals following elimination of postsynaptic target cells was studied in living mouse muscle. Several days after muscle fiber damage, observations of previously identified neuromuscular junctions showed that motor nerve terminal branches had rapidly disappeared from degenerating muscle fibers. Following muscle fiber regeneration, loss of terminal branches ceased and nerve terminals regrew, reestablishing some of the original sites and adding new branches. The distribution of acetylcholine receptors reorganized in the regenerated muscle so that perfect alignment was reestablished with the newly configured nerve terminals. These results argue that the maintenance of the full complement of nerve terminal branches at a neuromuscular junction is dependent on the presence of a healthy muscle fiber. Similarly, regenerating muscle is dependent on the nerve terminal for the organization and maintenance of postsynaptic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号