首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Acetone is an important volatile disease marker. Due to its nature of activity and volatility, it is a difficult task to measure the concentration of acetone in biological samples with accuracy. In this paper, we developed a novel method for determination of trace amount acetone in human plasma by solid-phase microextraction technique with on-fiber derivatization. In this method, the poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber was used and O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Acetone in plasma sample was agitated into headspace and extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized with PFBHA on the fiber. Acetone oxime was analyzed by gas chromatography-mass spectrometry (GC-MS). Quantitative analysis of acetone in plasma was carried out by using external standard method. The SPME conditions (extraction temperature and time) and the method validation were studied. The present method was tested by determination of acetone in diabetes plasma and normal plasma. Acetone concentration in diabetes plasma was found to be higher than 1.8mM, while in normal plasma was lower than 0.017 mM. The results show that the present method is a potential tool for diagnosis of diabetes.  相似文献   

2.
A new method based on direct solid-phase microextraction (DI-SPME) followed by gas chromatography-mass spectrometry was developed for the purpose of determining quinalphos in blood and urine. Two types of coated fibre have been assayed and compared: carbowax/divinylbenzene (CW/DVB 65 microm) and polydimethylsiloxane (PDMS 100 microm). The main parameters affecting the SPME process such as temperature, salt addition, pH, stirring and adsorption/desorption time profiles were optimized to enhance the sensitivity of the procedure. The method was developed using only 100 microL of blood and urine. Limits of detection of the method for blood and urine matrices were, respectively, 10 and 2 ng/mL. Linearity was established over concentration ranges from 0.05 to 50 microg/mL for blood, and 0.01 to 50 microg/mL for urine, with regression coefficients ranging between 0.9991 and 0.9999. Intra- and interday precision values were less than 13%, and accuracy was within +/-15% of the nominal concentration for all studied levels in both matrices. Absolute recoveries were 14 and 26% for blood and urine, respectively.  相似文献   

3.
This work evaluates the utility of solid-phase microextraction (SPME) in the analysis of amphetamines by liquid chromatography (LC) after chemical derivatization of the analytes. Two approaches have been tested and compared, SPME followed by on-fiber derivatization of the extracted amphetamines, and solution derivatization followed by SPME of the derivatives formed. Both methods have been applied to measure amphetamine (AP), methamphetamine (MA), and 3,4-methylenedioxymethamphetamine (MDMA), using the fluorogenic reagent 9-fluorenylmethyl chloroformate (FMOC) and carbowax-templated resin (CW-TR)-coated fibers. Data on the application of the proposed methods for the analysis of different kind of samples are presented. When analyzing aqueous solutions of the analytes, both approaches gave similar analytical performance, but the sensitivity attainable with the solution derivatization/SPME method was better. The efficiencies observed when processing spiked urine samples by the SPME/on-fiber derivatization approach were very low. This was because the extraction of matrix components into the fiber coating prevented the extraction of the reagent. In contrast, the efficiencies obtained for spiked urine samples by the solution derivatization/SPME approach were similar to those obtained for aqueous samples. Therefore, the later method would be the method of choice for the quantification of amphetamines in urine.  相似文献   

4.
A simple and highly sensitive method that involves hollow-fiber-supported liquid phase microextraction (HF-LPME) with in situ derivatization and gas chromatography-mass spectrometry (GC-MS) was developed for the determination of chlorophenols (CPs) such as 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TrCP), 2,3,4,6-tetrachlorophenol (TeCP) and pentachlorophenol (PCP) in human urine samples. Human urine samples were enzymatically de-conjugated with beta-glucuronidase and sulfatase. After de-conjugation, HF-LPME with in situ derivatization was performed. After extraction, 2mul of extract was carefully withdrawn into a syringe and injected into the GC-MS system. The limits of detection (S/N=3) and quantification (S/N>10) of CPs in the human urine samples are 0.1-0.2ngml(-1) and 0.5-1ngml(-1), respectively. The calibration curve for CPs is linear with a correlation coefficient of >0.99 in the range of 0.5-500ngml(-1) for DCP and TrCP, and of 1-500ngml(-1) for TeCP and PCP, respectively. The average recoveries of CPs (n=6) in human urine samples are 81.0-104.0% (R.S.D.: 1.9-6.6%) with correction using added surrogate standards. When the proposed method was applied to human urine samples, CPs were detected at sub-ngml(-1) level.  相似文献   

5.
A sensitive and straightforward method for the determination of trihalomethanes (THMs) in urine by using headspace extraction technique has been developed. Chemical and instrumental variables were studied in order to optimize the method for sensitivity: an excess of KCl (4 g per 12 ml of urine), an oven temperature of 85 degrees C and an equilibration time of 30 min were selected. The use of the mass spectrometer in selected ion monitoring mode allows achieving linear ranges between 10 and 5000 ng/l and detection limits from 3 to 10 ng/l, for 12 ml of urine. The stability of the urine sample during storage at 4 and -20 degrees C was also evaluated: THMs remained stable for up to 2 days and 2 months, respectively. Finally, the method was successfully applied to study the THM uptake from swimmers of an indoor swimming pool, as well as non-swimmers. This study revealed that the concentrations of THMs in urine increased approximately three times for chloroform and bromodichloromethane after swimming activity. In addition, THMs in unchanged form were mainly excreted within 2-3h after the end of exposure.  相似文献   

6.
A stable isotope dilution assay was developed for the sensitive determination of D-galactonic acid. D-[U-13C(6)]galactono-1,4-lactone was prepared as internal standard. Unlabelled and U-13C-labelled D-galactonic acid species were converted to the N-(1-butyl)galactonamide pentaacetate derivatives and assessed by gas chromatography-mass spectrometry (GC-MS). Positive chemical ionisation and monitoring of the [MH-60](+)-ions in the galactonate chromatographic peak at m/z 402 and m/z 408 were used for quantification. The procedure was applied to study the variability of D-galactonate excretion in healthy subjects and galactosemic patients and to monitor the D-galactonate-D-galactitol ratio in human urine.  相似文献   

7.
Concerned with variations in abuse potential and control status among various isomers of ephedrines and norephedrines, this study was conducted to develop an effective method for the simultaneous analysis of eight ephedrine-related compounds along with structurally similar cathinones. Among various approaches studied, a 60-m HP-5MS (0.25 mm i.d., 0.25 microm film thickness) was successfully used to characterize the following compounds that were derivatized with (-)-alpha-methoxy-alpha-trifloromethylphenylacetic acid (MTPA): (+)-cathinone, (-)-cathinone, (+)-norephedrine, (-)-norephedrine, (+)-norpseudoephedrine, (+)-ephedrine, (-)-ephedrine, (-)-pseudoephedrine, (+)-pseudoephedrine. (-)-Cathine standard was not available, but should also be resolvable under this analytical procedure. This method was successfully applied to the analysis of selected cold remedies for characterizing the enantiomeric compositions of the compounds present in these samples.  相似文献   

8.
Here we describe a simple, fast and sensitive liquid chromatography/mass spectrometry method with automated on-line extraction to quantify isatin, an endogenous monoamine oxidase, and atrial natriuretic peptide inhibitor, in urine. After derivatisation of isatin to isatinoxime with hydroxylamine hydrochloride and zinc sulfate precipitation, samples were loaded on the extraction column, washed and, after activation of the column-switching valve, backflushed onto the analytical column. Using electrospray ionisation, [M+H]+ ions could be detected in the selected ion monitoring mode. The assay was linear from 5 to 5000 ng/ml (r2>0.99) and analytical recovery was >80%. Inter-assay precision for the quality control samples was less than 3% and inter-assay accuracy was within +/- 5%.  相似文献   

9.
A gas chromatographic–mass spectrometric method was developed for the simultaneous analysis of 15 low-dosed benzodiazepines, both parent compounds and their corresponding metabolites, in human urine. The target compounds are alprazolam, -hydroxyalprazolam, 4-hydroxyalprazolam, flunitrazepam, 7-aminoflunitrazepam, desmethylflunitrazepam, flurazepam, hydroxyethylflurazepam, nitrogen-desalkylflurazepam, ketazolam, oxazepam, lormetazepam, lorazepam, triazolam and -hydroxytriazolam. Nitrogen-methylclonazepam is used as the internal standard. The urine sample preparation involves enzymatic hydrolysis of the conjugated metabolites with Helix pomatia β-glucuronidase for 1 h at 56°C followed by solid-phase extraction on a phenyl-type column. The extracted benzodiazepines are subsequently analyzed on a polydimethylsiloxane column using on-column injection to enhance sensitivity. The extraction efficiency exceeded 80% for all compounds except for oxazepam, lorazepam and 4-hydroxyalprazolam which had recoveries of about 60%. The LODs ranged from 13 to 30 ng/ml in the scan mode and from 1.0 to 1.7 ng/ml in the selected ion monitoring (SIM) mode. Linear calibration curves were obtained in the concentration ranges from 50 to 1000 ng/ml in the scan mode and from 5 to 100 ng/ml in the SIM mode. The within-day and day-to-day relative standard deviations at three different concentrations never exceeded 15%.  相似文献   

10.
The need for analytical screening tests more reliable and valid to detect amphetamine and related "designer drugs" in biological samples is becoming critical, due to the increasing diffusion of these drugs on the European illegal market. The most common screening procedures based on immunoassays suffer a number of limitations, including low sensitivity, lack of specificity and limited number of detectable substances. This paper describes a screening method based on gas-chromatography-mass-spectrometry (GC/MS) using positive chemical ionisation (PCI) detection. Methanol was used as reactant gas in the ionisation chamber. Molecular ions of different compounds were monitored, allowing a sensitivity of 5-10 ng/ml with high selectivity. The sensitivity of the method gives positive results in samples taken 48-72 h after intake of one dose of 50-100 mg. The method is simple and rapid. Sample preparation was limited to one liquid-liquid extraction, without any hydrolysis and derivatisation. Hydrolysis is critical to identify metabolites excreted as conjugates. Blank urine samples spiked with known amounts of amphetamine (AM), methylamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethylamphetamine (MDMA), methylenedioxyethylamphetamine (MDEA) and methylenedioxyphenyl-N-methyl-2-butanamine (MBDB) were analysed. The method was successfully tested on real samples of urine from people, whose use of amphetamine was suspected, and results were compared with results obtained with immunoassays.  相似文献   

11.
A novel solid-phase microextraction (SPME) method was developed for isolation of dextromethorphan (DM) and its main metabolite dextrorphan (DP) from human plasma followed by GC-MS determination. Three different polymers, poly(dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol) monobutyl ether (Ucon) and polyethylene glycol (PEG) were synthesized as coated fibers using sol-gel methodologies. DP was converted to its acetyl-derivative prior to extraction and subsequent determination. The porosity of coated fibers was examined by SEM technique. Effects of different parameters such as fiber coating type, extraction mode, agitation method, sample volume, extraction time, and desorption condition, were investigated and optimized. The method is rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. The limits of detection are 0.010 and 0.015 ng/ml for DM and DP, respectively. The precisions for both analytes are below 5% (n=5). The correlation coefficient was satisfactory (r(2)>0.99) for both DM and DP. Linear ranges were obtained from 0.03 ng/ml to 2 microg/ml for DM and from 0.05 ng/ml to 2 microg/ml for DP.  相似文献   

12.
Solid-phase microextraction (SPME) is under investigation for its usefulness in the determination of a widening variety of volatile and semivolatile analytes in biological fluids and materials. Semivolatiles are increasingly under study as analytical targets, and difficulties with small partition coefficients and long equilibration times have been identified. Amphetamines were selected as semivolatiles exhibiting these limitations and methods to optimize their determination were investigated. A 100- micro m polydimethylsiloxane (PDMS)-coated SPME fiber was used for the extraction of the amphetamines from human urine. Amphetamine determination was made using gas chromatography (GC) with flame-ionization detection (FID). Temperature, time and salt saturation were optimized to obtain consistent extraction. A simple procedure for the analysis of amphetamine (AMP) and methamphetamine (MA) in urine was developed and another for 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methamphetamine (MDMA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) using headspace solid-phase microextraction (HS-SPME) and GC-FID. Higher recoveries were obtained for amphetamine (19.5-47%) and methamphetamine (20-38.1%) than MDA (5.1-6.6%), MDMA (7-9.6%) and MDEA (5.4-9.6%).  相似文献   

13.
A simple, rapid and sensitive method termed dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC/MS) was developed for the determination of tricyclic antidepressants (TCAs) in human urine sample. An appropriate mixture of methanol (disperser solvent), carbon tetrachloride (extraction solvent), and acetic anhydride (derivatization reagent) was injected rapidly into human urine sample. After extraction, the sedimented phase was analyzed by GC/MS. The calibration curves obtained with human urine were linear with a correlation coefficient of over 0.99 in the range of 2.0/5.0-100 ng mL(-1). Under the optimum conditions (carbon tetrachloride: 10 μL, methanol: 150 μL), the detection limits and the quantification limits of the tricyclic antidepressants were 0.5-2.0 ng mL(-1) and 2.0-5.0 ng mL(-1), respectively. The average recoveries of TCAs were 88.2-104.3%. Moreover, the inter- and intra-day precision and accuracy was acceptable at all concentrations. The results showed that DLLME is applicable to the determination of trace amounts of TCAs in human urine sample.  相似文献   

14.
One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. [2H3]Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-[2H3]acetyl glycerol (obtained by enzymatic hydrolysis of [2H3]-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace of 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of [2H3]-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of [13C2]-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.  相似文献   

15.
A method using mixed phase disk solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) was developed for confirmation of amphetamine (AMP), methamphetamine (MET), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) in urine samples after immunoassay screening. Disk SPE provided hydrophobic (C(18)) and strong cation-exchange (SCX) interactions. The analytes were retained on SCX functional groups in the disk and eluted with ammoniated ethyl acetate after washed with methanol. Confirmation and quantitation was exercised by selected ion monitoring using nikethamide as chromatographic standard. Recoveries of the amphetamines were between 73.0 and 104.6% with RSDs in range of 2.1-6.4% (n=3). The limits of detection were 2 ng/ml for AMP, MET and MDMA, and 4 ng/ml for MDA. Five real urine samples were tested with the method after immunoassay screening, and the results were comparable to those of traditional liquid-liquid extraction (LLE). The method was solvent-saved, simple, rapid and reliable, and the extract was cleaner than that of LLE.  相似文献   

16.
The purpose of this study was to develop a simple and accurate analytical method to determine amino acids in urine samples. The developed method involves the employment of an extract derivatization technique together with gas chromatography-mass spectrometry (GC-MS). Urine samples (300 microl) and an internal standard (10 microl) were placed in a screw tube. Ethylchloroformate (50 microl), methanol-pyridine (500 microl, 4:1, v/v) and chloroform (1 ml) were added to the tube. The organic layer (1 microl) was injected to a GC-MS system. In this proposed method, the amino acids in urine were derivatized during an extraction, and the analytes were then injected to GC-MS without an evaporation of the organic solvent extracted. Sample preparation was only required for ca. 5 min. The 15 amino acids (alanine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, tryptophan, valine) quantitatively determined in this proposed method. However, threonine, serine, asparagine, glutamine, arginine were not derivatized using any tested derivatizing reagent. The calibration curves showed linearity in the range of 1.0-300 microg/ml for each amino acid in urine. The correlation coefficients of the calibration curves of the tested amino acids were from 0.966 to 0.998. The limit of detection in urine was 0.5 microg/ml except for aspartic acid. This proposed method demonstrated substantial accuracy for detection of normal levels. This proposed method was limited for the determination of 15 amino acids in urine. However, the sample preparation was simple and rapid, and this method is suitable for a routine analysis of amino acids in urine.  相似文献   

17.
An analytical method for the determination of benazepril and its active metabolite, benazeprilat, in human plasma by capillary gas chromatography-mass-selective detection, with their respective labelled internal standard, was developed and validated according to international regulatory requirements. After addition of the internal standards, the compounds were extracted from plasma by solid-phase extraction using automated 96-well plate technology. After elution, the compounds were converted into their methyl ester derivatives by means of a safe and stable diazomethane derivative. The methyl ester derivatives were determined by gas chromatography using a mass-selective detector at m/z 365 for benazepril and benazeprilat and m/z 370 for the internal standards. Intra- and inter-day accuracy and precision were found to be suitable over the range of concentrations between 2.50 and 1000 ng/mL.  相似文献   

18.
We devised a sensitive and simple method to simultaneously determine bromvalerylurea and allylisopropylacetylurea in human blood and urine by gas chromatography-mass spectrometry. Bromvalerylurea and allylisopropylacetylurea were extracted using an Extrelut column with an internal standard, 2-bromohexanoylurea, followed by derivatization with heptafluorobutyric anhydride. The derivatized extract was submitted to GC-MS analysis of EI-SIM mode. The calibration curves of both compounds were linear in the concentration range from 0.01 to 10 microg/ml in both blood and urine samples. The lower limits of detection of bromvalerylurea and allylisopropylacetylurea were 0.005 and 0.005 microg/ml, respectively. This method proved most useful in accurately identifying these drugs in blood and urine from an autopsied individual.  相似文献   

19.
A gas chromatography-mass spectrometric (GC-MS) method was developed for the determination of 2-naphthol (2-NAP) and 1-hydroxypyrene (1-HOP) in human urine. Extraction from urine after the enzyme hydrolysis with β-glucuronidase/arylsulfatase was achieved with a liquid extraction using 5 mL of pentane. After addition of 50 μL of N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBDMSTFA) to prevent the loss of 2-NAP during drying, the extract was completely dried and derivatized with MTBDMSTFA for 30 min at 60 °C. The accuracies were in the range of 96-109% at a concentration of 0.5, 10 and 25 μg/L and their precisions were less than 15%. Method detection limits of 2-NAP and 1-HOP were 0.07 and 0.01 μg/L, respectively. This method was used to analyze twenty urine samples, and they were found in the concentration range <0.07-13.7 μg/L (2-NAP) and <0.01-0.88 μg/L (1-HOP). The concentrations of 2-NAP and 1-HOP were well correlated to those of naphthalene and pyrene in blood, respectively.  相似文献   

20.
A stable isotope dilution gas chromatography-mass spectrometry method using196Hg as an internal standard is described for determining Hg in blood. In this method, the blood samples are not subjected to any digestion to avoid the loss of Hg. A solution of 0.6M HCl is used to free Hg present in blood from proteins. The pH of the solution is adjusted to 9 using borate buffer and Hg chelated using lithiumbis(trifluoroethyl)dithiocarbamate. All isotope ratio measurements are made using an organic mass spectrometer. Overall precision values for the five major Hg isotopes relative to202Hg are 1.6–2.3% when 10 ng samples of chelated Hg are analyzed. No appreciable memory or carryover effect is observed when two synthetic mixtures differing in196Hg/202Hg ratios by a factor of 30 are sequentially analyzed. The method is validated by determining Hg in blood samples using isotope dilution GC-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号