首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrophysiological effects of bromobenzoyl - methyladamantylamine ( BMA ) were investigated in isolated electrically driven right ventricular papillary muscles of guinea pigs using conventional glass-microelectrode technique. BMA markedly increased the action potential duration, depolarized the membrane, reduced the maximum rate of depolarization (Vmax) and induced pacemaker-like action potentials. In ventricular myocardium depolarized partially (up to --40 mV) by incubation with 26 mM K+-Krebs solution, BMA induced slow action potentials. In these preparations, BMA was also able to evoke automaticity. Since the pacemaker activity occurring in the voltage range of --90 mV to --60 mV has been attributed to the deactivation of a pacemaker K+ current labelled IK2, and that occurring in the plateau range (from --40 mV to +10 mV) has been attributed to the deactivation of an outward plateau K+ current labelled IX1 , it can be concluded that BMA may inhibit both IK2 and IX1 currents.  相似文献   

2.
The electromechanical and -physiological effects of beauvericin were studied in isolated smooth and heart muscle preparations of the guinea pig. Beauvericin concentration-dependently decreased the force of contraction in precontracted (60 mM KCl) terminal ilea with an IC50 of 0.86 M, and in electrically stimulated (1 Hz) papillary muscles with an IC50 of 18 M. This negative inotropic effect in papillary muscles was antagonised in a non-competitive way by increased extracellular calcium concentrations. Spontaneous activity in right atria was affected at concentrations >10 M beauvericin. The negative chronotropic effect was less pronounced than the negative inotropic effect. In action potentials of electrically driven (1 Hz) papillary muscles, 10 M beauvericin significantly decreased membrane resting potential until unexcitability of the preparation occurred. Despite depolarisation of the membrane the maximum rate of rise of the action potential was not changed. The action potential duration was shortened, but the decrease was only significant at times to 20% and 50% repolarisation. These data, derived from the electrophysiological experiments, not only imply an effect on the calcium current as suggested by the effects on contractility, but also an interaction with the sodium inward and potassium outward currents.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Rabbit papillary muscles under current depolarization generate an anomalous double action potential (AP) instead of a usual repetitive activity characteristic of myocardial fibres of different mammalian species. The mechanism of the double AP consisting of a spike-like and a delayed slow component was analysed using pharmacological approach. No changes in the anomalous double AP were observed in the presence of Cs ions. This contrasted with the inhibitory action of 4-aminopyridine (4-Apy). High sensitivity of the phenomenon to 4-APy suggests a contribution of the transient outward current, previously postulated for rabbit working myocardial fibres, to account for the double AP.  相似文献   

4.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

5.
The influence of voltage-dependent conductances on the receptor potential of Limulus ventral photoreceptors was investigated. During prolonged, bright illumination, the receptor potential consists of an initial transient phase followed by a smaller plateau phase. Generally, a spike appears on the rising edge of the transient phase, and often a dip occurs between the transient and plateau. Block of the rapidly inactivating outward current, iA, by 4-aminopyridine eliminates the dip under some conditions. Block of maintained outward current by internal tetraethylammonium increases the height of the plateau phase, but does not eliminate the dip. Block of the voltage-dependent Na+ and Ca2+ current by external Ni2+ eliminates the spike. The voltage-dependent Ca2+ conductance also influences the sensitivity of the photoreceptor to light as indicated by the following evidence: depolarizing voltage- clamp pulses reduce sensitivity to light. This reduction is blocked by removal of external Ca2+ or by block of inward Ca2+ current with Ni2+. The reduction of sensitivity depends on the amplitude of the pulse, reaching a maximum at or approximately +15 mV. The voltage dependence is consistent with the hypothesis that the desensitization results from passive Ca2+ entry through a voltage-dependent conductance.  相似文献   

6.
The effects of Cs+, 5-25 mM, were studied in cat and guinea pig papillary muscles using voltage clamp and current clamp techniques. In solutions containing normal K+, the major effects of Cs+ were depolarization of the resting potential and reduction of the delayed outward current (ixl) between -80 and -20 mV. Both inward and outward portions of the isochronal current voltage relation (l-s clamps) were reduced by extracellular Cs+. This resulted in a substantial reduction of inward rectification and, by subtraction from the normal I-V relationship, the definition of a Cs+-sensitive component of current. Under current clamp conditions, 5-10 mM Cs+ produced a dose-dependent slowing of repetitive firing induced by depolarization. At higher concentrations (25 mM) the resting potential was depolarized and repetitive activity could not be induced by further depolarization. However, release of hyperpolarizing pulses was followed by prolonged bursts of repetitive action potentials, suggesting partial reversal of blockade or participation of another pacemaker process. The experimental results and a numerical simulation show that under readily attainable conditions, reduction in an outward pacemaker current may slow pacemaker activity.  相似文献   

7.
The effects of 4-aminopyridine (4-AP) at concentration of 1 mM on the contractility of rat isolated papillary muscle subjected to simulated ischaemia has been evaluated. Additionally, the effects of 4-AP on the phenylephrine inotropic action (a selective agonist of alpha1-adrenergic receptor) on rat isolated cardiac tissue underwent simulated ischaemia and reperfusion was studied. Experiments were performed on rat isolated papillary muscles obtained from left ventricle. The following parameters have been measured: force of contraction (Fc), velocity of contraction (+dF/dt), velocity of relaxation (-dF/dt) and the ratio between time to peak contraction (ttp) and relaxation time at the level of 10% of total contraction amplitude (tt10) as an index of lusitropic effects. Simulated ischaemia lasting 45 min was induced by replacement of standard normoxic solution by no-substrat one gassing with 95% N2/5%CO2. Although 4-AP exerted a slight, but significant positive inotropic action itself, pretreatment with 1 mM of this compound significantly depressed a recovery of Fc and +dF/dt, but improves recovery of -dF/dt in the rat papillary muscle during reperfusion as compared with control group of preparations. Moreover, the paradoxical negative inotropic action of phenylephrine observed in rat stunned papillary muscle was prevented in preparations previously treated by 4-AP. These findings suggest that an inhibition of outward K+ current (probably transient outward and rapid component of delayed rectifying currents at 1 mM of 4-AP) aggravates ischaemia-induced failure in contractility but prevents changes in alpha1-adrenergic receptor signaling pathway occuring during ischaemia.  相似文献   

8.
《Life sciences》1991,49(4):PL7-PL12
The effects of sotalol, a β-adrenoceptor blocker and class III antiarrhythmic agent, on transmembrane ionic currents were examined in single rabbit and guinea pig ventricular myocytes using whole-cell voltage-clamp techniques. In neither of these species did 60 μM sotalol appreciably effect the inward rectifier, the transient outward or the inward calcium currents. In addition, sotalol did not elicit a slowly inactivating component of the sodium current as did 1 μg/ml veratrine. In guinea pig ventricular myocytes, sotalol also significantly depressed the outward delayed rectifier current. An outward delayed rectifier current was not observed in rabbit ventricular myocytes examined at room temperature; and, under these conditions sotalol did not lengthen action potential duration. Sotalol induced lengthening of cardiac action potential duration can, therefore, be explained by depression the outward delayed rectifier current.  相似文献   

9.
Two types of electrical and mechanical responses to 1 mumol/l ryanodine, depending on the intracellular calcium load, were observed in rabbit papillary muscles. In a normal calcium solution, ryanodine induced a transient decline followed by a stable increase in the developed force (by 20 +/- 5% of the pretreatment level; n = 30) and prolonged the action potential (AP). The positive ryanodine response showed an increased time-to-peak force and was completely suppressed by 2 mumol/l nifedipine, partially blocked by 50 mumol/l tetracaine (Ca2+ release blocker), but greatly potentiated by 20 mmol/l CsCl or (-) Bay R 5414 which prolonged the AP. The prolonged time-to-peak force of the positive ryanodine response was shortened by procedures raising the content of Ca2+ in the sarcoplasmic reticulum (SR). It is suggested that the initial decline in the force amplitude results from Ca2+ leakage from the SR which is further compensated for by an elevation of both the transmembrane Ca2+ entry and intracellular Ca2+ release. In calcium overloaded myocardium, 1 mumol/l ryanodine caused irreversible contracture and dramatic AP shortening, explained by a massive Ca2+ release from the overloaded SR into the cytoplasm. It is concluded that the calcium content in the SR is the main modulator of the electrical and mechanical effects of ryanodine in ventricular myocardium.  相似文献   

10.
Blockers of the transient outward current (4-aminopyridine) and the Ca current (Co2+) as well as injection of polarizing current during the plateau were used to assess the role of these current systems as determinants of action potential duration at different pacing rates. Papillary muscles and ventricular trabecula were superfused with oxygenated Krebs solution at 33 degrees C and driven at a basic rate of 1 Hz. The effects of varying the frequency of stimulation between 0.1 and 4 Hz on action potential parameters were determined under control conditions and during exposure to 2 mM 4-aminopyridine, 1-3 mM CoCl2, or a mixture of 4-aminopyridine and CoCl2. The control relationship between action potential duration and pacing rate showed a maximum between 1 and 2 Hz. Under 4-aminopyridine, the plateau height and the action potential duration increased. The rate-dependent shortening of the action potential at frequencies below 1 Hz was reduced or abolished, and enhanced shortening was observed at rates above 1 Hz. Exposure to Co2+ reduced the action potential shortening at rates higher than 1 Hz. Both blockers, 4-aminopyridine and Co2+ were necessary to eliminate the rate-dependent changes of the action potential duration. Our results indicated that both the transient outward current and the inward calcium current determine the plateau height and duration for frequencies less than or equal to 2 Hz, whereas at higher rates, the Ca current plays a dominant role.  相似文献   

11.
The paper describes the study of anti-arrhythmia effects of ionol. In isolated rabbit papillary muscle, ionol (a) had no effect on the depolarization-induced automaticity; (b) did not influence early afterdepolarizations: (c) delayed the onset of post-depolarizations initiated by Ca-overload and therefore inhibited the ectopic focal activity in myocardium. In isolated left auricles of rabbit, ionol suppressed the shortening of the excitation wavelength induced with adrenaline and thus protected the heart of reentry and consequent rhythm disturbances.  相似文献   

12.
Electromyograms of mammalian extraocular muscles were recorded by means of a coaxial electrode. Besides normal extracellular spike potentials (1-2 msec duration), monophasic waves (with a decline lasting up to 7 msec) were recorded. As to the interpretation of these potential changes in terms of a potential drop that is produced by local currents flowing from the resting region of a fibre towards the active region consideration is given to two cases. First, a propagated active region (spike potentials, at least diphasic) and second, a stationary active region (with resulting monophasic waves). In the EMGs spontaneous monophasic potentials recruit at a lower threshold than spike potentials; frequency changes were observed when head position was altered. The latter are interpreted as local depolarizations occurring at neuromuscular junctions of multiple innervated muscle fibres among those fibre types that compose extraocular muscles.  相似文献   

13.
Y M Bae  K S Kim  J K Park  E Ko  S Y Ryu  H J Baek  S H Lee  W K Ho  Y E Earm 《Life sciences》2001,69(21):2451-2466
The membrane potential in vascular smooth muscle cells contributes to the regulation of cytosolic [Ca2+], which in turn regulates membrane potential by means of Ca2+i-dependent ionic currents. We investigated the characteristics of Ca2+i-dependent currents in rabbit coronary and pulmonary arterial smooth muscle cells. Ca2+i-dependent currents were recorded using the whole-cell patch-clamp technique while cytosolic [Ca2+] was increased by caffeine. The reversal potentials of caffeine-induced currents were between -80 and -10 mV under normal ionic conditions, whereas they were about 0 mV when K+-free NaCl solutions were used both in pipette and bath. The total substitution of extracellular Na+ with membrane-impermeable cation N-Methyl-D-glucamine did not affect caffeine-induced currents, implying no significant contribution of Na+ as a permeant ion to the currents. The substitution of extracellular NaCl with sucrose reduced outward component of the currents and shifted the reversal potentials according to the change in Cl- equilibrium potential. Upon application of the niflumic acid under K+-free conditions, most of the current induced by caffeine was inhibited. Taken together, the results of the present study indicate that K+ and Cl- currents are major components of Ca2+i-dependent currents in vascular smooth muscles isolated from coronary and pulmonary arteries of the rabbit, and the relative contribution of each type of current to total currents are not different between the two arteries.  相似文献   

14.
Imanaka Y  Takeuchi H 《Chemical senses》2001,26(8):1023-1027
The whole-cell, patch clamp [corrected] method was applied to olfactory receptor cells in slice preparations made from bullfrog olfactory epithelium. Under voltage-clamp conditions, olfactory receptor cells showed a transient inward current followed by a steady outward current in response to depolarizing voltage steps, as has been shown in the isolated preparation. The input resistance was 5.4 +/- 3.9 GOmega and capacitance 21.9 +/- 9.7 pF. Under current-clamp conditions, depolarization of cells by current injection induced action potentials. In 13 out of 20, spike generation was repetitive with a maximum frequency of 24 Hz. The frequency of the repetitive discharges increased as the injected current was increased. The relationship between the size of the injected current and firing frequency could be well fitted by the Michaelis-Menten equation, indicating that the spike generation site lacks the non-linear boosting system. The slice preparation developed here would provide a powerful tool to study the spike encoding system of the olfactory receptor cells.  相似文献   

15.
1.  The electrogenic Na-K pump activity was studied in thePlotosus electroreceptor. Single ampullae (sensory epithelium) were dissected free, and mounted over an air gap at the ampullary duct, to electrically isolate the receptor activity for current- and voltage-clamp experiments.
2.  After equilibration in K-free saline, the bathing medium around the ampulla was exchanged to test saline. Under current-clamp, 4 mM K saline induced reversible hyperpolarization of about 13 mV. Under voltage-clamp, the 4 mM saline induced an outward current of about 10 nA.
3.  Both responses were suppressed by ouabain, with a half suppression at 1.5×10–7 M for current, which suggested involvement of ionic pumps. In the K-free saline, ouabain alone induced no response.
4.  The current response to high K saline was always outward, and was dependent on K concentration. In the presence of ouabain, high K saline as high as 40 mM, ten times the standard K, induced no inward current, which suggested little contribution of K conductance to the responses.
5.  The outward current responses were induced, also dose-dependently, by various alkali metal cations. The apparent dissociation constants were 6.8, 1.2, 21.7, and 85.1 mM for K, Rb, Cs, and Li, suggesting their potency in the order of Rb>K> Cs>Li.
6.  Thus, the hyperpolarization and outward current responses were due to an electrogenic NaK pump in the basal face of the sensory epithelium. The Na-K pump seems to be responsible, to a certain extent, for maintenance of the negative DC potential in the standard 4 mM K saline, which supplies an outward current to bias the sensory epithelium in situ.
  相似文献   

16.
The force-frequency relationship (FFR) in papillary muscles of the heart of active ground squirrel in different seasons was studied. For comparison, similar preparations from rat and rabbit were used. It was shown that the FFR of papillary muscles of active ground squirrel undergo significant seasonal changes. In summer and a part of autumn squirrels, a negative staircase (a decrease in the isometric force with increasing stimulation frequency) similar to that in adult rat was revealed. The FFR of the majority of autumn, winter and spring squirrels were polyphasic and contained both positive and negative components. Changes in the force in response to the introduction of pauses at a constant stimulation frequency were recorded. Two types of the post-rest recovery pattern were revealed in the myocardium of ground squirrels. For frequencies range with the negative direction of FFR, a typical pattern of rest-potentiation similar to that in rat papillary muscles was observed. The amplitude of the first post-rest contraction (F1) was usually higher than that of the preceding steady-state contraction. In papillary muscles of autumn animals the F1 value was greater that in summer, which suggests an enhanced release of Ca2+ from the sarcoplasmic reticulum. There was no post-rest potentiation in the range of frequencies with positive direction of FFR, and the post-rest recovery pattern in these cases was principally different from those of rat and rabbit preparations. It was proposed that seasonal differences of the FFR of active ground squirrel heart are associated with changes in the ratio of activities of the calcium-transporting system in the hibernation period.  相似文献   

17.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

18.
Experiments on papillary muscles of normal (control) rabbits and of those with the compression syndrome (CS) were made to explore the action of the control and "syndromic" blood plasma on electric and contractile activity of the myocardium. Isometric contractions of myocardial preparations were recorded at varying stimulation frequencies (0.1-2 Hz). Intracellular rest potentials (RP) and action potentials (AP) were led away with the aid of glass microelectrodes filled with 2.5 M KCl. The replacement of Tyrode solution by the control plasma raised the amplitude of papillary muscle contractions, that being greater as regards the muscles from rabbits with the CS. The "syndromic" plasma (diluted by Tyrode solution in a 1:1 ratio) markedly inhibited the amplitude of contractions of papillary muscles from both the control rabbits and animals with the CS. Reduction of the contractions induced by the "syndromic" plasma seen in all the preparations was followed by two patterns of changes in electrical activity of myocardial fibers. In one pattern, the RP, the amplitude and duration of the AP declined. In the other, on the contrary, the changes were reduced to a greater AP duration. The conclusion is made about the absence of a direct relationship between the decrease in myocardial contractility and changes in intracellular potentials induced by the "syndromic" plasma. It is suggested that the "syndromic" plasma deranges the process of stimulation and contraction coupling in heart papillary muscles.  相似文献   

19.
The effect of Bay K 8644 on the electrical activity of the smooth muscle cells in the main pulmonary artery of the rabbit was examined. In normal physiological solution, the resting membrane potential was -56 +/- 0.6 mV, and the cells were electrically quiescent. Tetraethylammonium (5 mM) depolarized the membrane to about -45 mV, and electrical stimulation elicited action potentials. To suppress contractile responses and thereby facilitate sustained impalements, the muscle strips were bathed with a hypertonic solution containing sucrose. The mean amplitude of the tetraethylammonium-induced action potentials in the hypertonic solution was 35 +/- 0.9 mV. The action potentials were dependent upon the extracellular Ca2+ concentration and were abolished by diltiazem (10(-6) M). Spontaneous action potentials were occasionally generated in the presence of tetraethylammonium alone and could be induced by the further addition of Ba2+ (0.5 mM). The Ca2+ agonist Bay K 8644 (10(-8) to 10(-6) M) had no effect on the resting membrane potential or excitability in normal solution. However, in the hypertonic solution containing tetraethylammonium, Bay K 8644 caused a further depolarization and oscillatory potential changes, which were not prevented by tetrodotoxin. The oscillations were suppressed or abolished by diltiazem or nilvadipine. Thus, active responses can occur in the normally quiescent smooth muscle cells of the rabbit pulmonary artery when the outward K+ current(s) are suppressed.  相似文献   

20.
The lateral geniculate nucleus of the cat was explored with micropipettes having submicroscopic tips. The only reliably recorded intracellular activity was from axons. Following orthodromic stimulation, the potentials recorded by the extracellular electrodes registered the net flow of current across the soma-dendritic membrane of the principal cell bodies. The current has three phases of flow away from the soma-dendritic membrane followed by a flow of current toward this membrane. The first component is ascribed to synaptic activity. Subsequent components are ascribed to the activity of the initial segment of the axon and a limited area of high threshold membrane on the soma. The evidence is interpreted as suggesting that most of the soma-dendritic membrane is excited synaptically to produce a postsynaptic potential, but is not excited electrically and does not produce a propagating spike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号