首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balaji S  Aruna S  Srinivasan N 《Proteins》2003,53(4):783-791
Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent charged residues in homologues are exposed and the rest of the charged residues are buried. These drastic substitutions are most often observed in homologous protein pairs with low sequence identity (<30%) and in large protein domains (>300 residues). Such buried charged residues in the large proteins are often located in the interface of sub-domains or in the interface of structural repeats, Beyond 7A of residue depth of buried apolar residues, or less than 4% of solvent accessibility, almost all the substituting charged residues are buried. It is also observed that acidic sidechains have higher preference to get buried than the positively charged residues. There is a preference for buried charged residues to get accommodated in the interior by forming hydrogen bonds with another sidechain than the main chain. The sidechains interacting with a buried charged residue are most often located in the structurally conserved regions of the alignment. About 50% of the observations involving hydrogen bond between buried charged sidechain and another sidechain correspond to salt bridges. Among the buried charged residues interacting with the main chain, positively charged sidechains form hydrogen bonds commonly with main chain carbonyls while the negatively charged residues are accommodated by hydrogen bonding with the main chain amides. These carbonyls and amides are usually located in the loops that are structurally variable among homologous proteins.  相似文献   

2.
The evolution of protein folds is under strong constraints from their surrounding environment. Although folding in water‐soluble proteins is driven primarily by hydrophobic forces, the nature of the forces that determine the folding and stability of transmembrane proteins are still not fully understood. Furthermore, the chemically heterogeneous lipid bilayer has a non‐uniform effect on protein structure. In this article, we attempt to get an insight into the nature of this effect by examining the impact of various types of local structure environment on amino acid substitution, based on alignments of high‐resolution structures of polytopic helical transmembrane proteins combined with sequences of close homologs. Compared to globular proteins, burying amino acid sidechains, especially hydrophilic ones, led to a lower increase in conservation in both the lipid‐water interface region and the hydrocarbon core region. This observation is due to surface residues in HTM proteins especially in the HC region being relatively highly conserved, suggesting higher evolutionary constraints from their specific interactions with the surrounding lipid molecules. Polar and small residues, particularly Pro and Gly, show a noticeable increase in conservation as they are positioned more towards the centre of the membrane, which is consistent with their recognized key roles in structural stability. In addition, the examination of hydrogen bonds in the membrane environment identified some exposed hydrophilic residues being better conserved when not hydrogen‐bonded to other residues, supporting the importance of lipid‐protein sidechain interactions. The conclusions presented in this study highlight the distinct features of substitution matrices that take into account the membrane environment, and their potential role in improving sequence‐structure alignments of transmembrane proteins. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment.  相似文献   

4.
In order to study structural aspects of sequence conservation in families of homologous proteins, we have analyzed structurally aligned sequences of 585 proteins grouped into 128 homologous families. The conservation of a residue in a family is defined as the average residue similarity in a given position of aligned sequences. The residue similarities were expressed in the form of log-odd substitution tables that take into account the environments of amino acids in three-dimensional structures. The protein core is defined as those residues that have less then 7% solvent accessibility. The density of a protein core is described in terms of atom packing, which is investigated as a criterion for residue substitution and conservation. Although there is no significant correlation between sequence conservation and average atom packing around nonpolar residues such as leucine, valine and isoleucine, a significant correlation is observed for polar residues in the protein core. This may be explained by the hydrogen bonds in which polar residues are involved; the better their protection from water access the more stable should be the structure in that position. Proteins 33:358–366, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
至今,有关蛋白质侧链的同源模建,除了在本体模板上安装侧链和少数限制条件下在同源模板上安装侧链的报道外,系统的研究和实施似乎还未见报道。本软件系统PMODELING采用同源移植和“死端排除“相结合的侧链安装策略,对与模板蛋白相应践基具有相似大小和形状的目标残基采用直接移植的方法。其余铡链则用广义“死端排除定则”安装。经众多蛋白的测试,达到了较好的模建品质。  相似文献   

6.
至今,有关蛋白质侧链的同源模建,除了在本体模板上安装侧链和少数限制条件下在同源模板上安装侧链的报道外,系统的研究和实施似乎还未见报道。本软件系统PMODELING采用同源移植和“死端排除“相结合的侧链安装策略,对与模板蛋白相应践基具有相似大小和形状的目标残基采用直接移植的方法。其余铡链则用广义“死端排除定则”安装。经众多蛋白的测试,达到了较好的模建品质。  相似文献   

7.
Worth CL  Blundell TL 《Proteins》2009,75(2):413-429
Although polar amino acids tend to be found on the surface of proteins due to their hydrophilic nature, their important roles within the core of proteins are now becoming better recognized. It has long been understood that a significant number of mainchain functions will not achieve hydrogen bond satisfaction through the formation of secondary structures; in these circumstances, it is generally buried polar residues that provide hydrogen bond satisfaction. Here, we describe an analysis of the hydrogen-bonding of polar amino acids in a set of structurally aligned protein families. This allows us not only to calculate the conservation of each polar residue but also to assess whether conservation is correlated with the hydrogen-bonding potential of polar sidechains. We show that those polar sidechains whose hydrogen-bonding potential is satisfied tend to be more conserved than their unsatisfied or nonhydrogen-bonded counterparts, particularly when buried. Interestingly, these buried and satisfied polar residues are significantly more conserved than buried hydrophobic residues. Forming hydrogen bonds to mainchain amide atoms also influences conservation, with those satisfied buried polar residues that form two hydrogen bonds to mainchain amides being significantly more conserved than those that form only one or none. These results indicate that buried polar residues whose hydrogen-bonding potential is satisfied are likely to have important roles in maintaining protein structure.  相似文献   

8.
The branched sidechain residues 24 and 33 in the hydrophobic core of rubredoxin differ between the Clostridium pasteurianum (Cp) and Pyrococcus furiosus (Pf) sequences. Their X-ray structures indicate that these two sidechains are in van der Waals contact with each other, while neither appears to significantly interact with the other nonconserved residues. The simultaneous interchange of residues 24 and 33 between the Cp and Pf rubredoxin sequences yield a complementary pair of hybrid proteins for which the sum of their thermodynamic stabilities equals that of the parental rubredoxins. The 1.2 kcal/mol change arising from this two residues interchange accounts for 21% of the differential thermodynamic stability between the mesophile and hyperthermophile proteins. The additional interchange of the sole nonconserved aromatic residue in the hydrophobic core yields a 0.78 kcal/mol deviation from thermodynamic additivity.  相似文献   

9.
Amino acid residues that are involved in functional interactions in proteins have strong evolutionary pressure to remain unchanged and consequently their substitution patterns are different from those that are noninteracting. To characterize and quantify the differences between amino acid substitution patterns due to structural restraints and those under functional restraints, we have made a comparative analysis of families of homologous proteins. Residues classified as having the same amino acid type, secondary structure, accessibility, and side-chain hydrogen bonds are shown to be better conserved if they are close to the active site. We have focused on enzyme families for this analysis since they have functional sites that are easily defined by their catalytic residues. We have derived new sets of environment-specific substitution tables, which we term function-dependent environment-specific substitution tables, where amino acid residues are classified according to their distance from the functional sites. The residues that are within a distance of 9 A from the active site have distinct amino acid substitution patterns when compared to the other sites. The function-dependent environment-specific substitution tables have been tested using the sequence-structure homology recognition program FUGUE and the results compared with the recognition performance obtained using the standard environment-specific substitution tables. Significant improvements are obtained in both recognition performance and alignment accuracy using the function-dependent environment-specific substitution tables (P-value = 0.02, according to the Wilcoxon signed rank test for alignment accuracy). The alignments near the active site are greatly improved with pronounced improvements at lower percentage identities (less than 30%).  相似文献   

10.

Cross-β amyloid fibrils and membrane-bound β-barrels are two important classes of β-sheet proteins. To investigate whether there are systematic differences in the backbone and sidechain conformations of these two families of proteins, here we analyze the 13C chemical shifts of 17 amyloid proteins and 7 β-barrel membrane proteins whose high-resolution structures have been determined by NMR. These 24 proteins contain 373 β-sheet residues in amyloid fibrils and 521 β-sheet residues in β-barrel membrane proteins. The 13C chemical shifts are shown in 2D 13C–13C correlation maps, and the amino acid residues are categorized by two criteria: (1) whether they occur in β-strand segments or in loops and turns; (2) whether they are water-exposed or dry, facing other residues or lipids. We also examine the abundance of each amino acid in amyloid proteins and β-barrels and compare the sidechain rotameric populations. The 13C chemical shifts indicate that hydrophobic methyl-rich residues and aromatic residues exhibit larger static sidechain conformational disorder in amyloid fibrils than in β-barrels. In comparison, hydroxyl- and amide-containing polar residues have more ordered sidechains and more ordered backbones in amyloid fibrils than in β-barrels. These trends can be explained by steric zipper interactions between β-sheet planes in cross-β fibrils, and by the interactions of β-barrel residues with lipid and water in the membrane. These conformational trends should be useful for structural analysis of amyloid fibrils and β-barrels based principally on NMR chemical shifts.

  相似文献   

11.
This paper describes a rapid, automated procedure which can be used for model building sidechains using (i) spatial information from sidechains in topologically equivalent positions as far as such a correlation is observed, and then (ii) most probable conformations of the sidechains in the respective secondary structure type. Analysis of topologically equivalent residues in the structurally conserved regions of a family of proteins implies that the spatial positions of the atoms in the sidechains rather than conformations should be considered when model building. Rules for the modelling of all 20 side-chains from each other in alpha-helical, beta-sheet and loop regions--a total of 1200--are established. Cluster analysis is used on positional data from the sidechain atoms of structurally equivalent residues in an homologous family to guide modelling. The most probable conformation for the sidechain is used for modelling atoms where no useful guidance is obtainable from equivalent sidechains of the homologous proteins. In order to test the procedure we have modelled the sidechains of the residues in the structurally conserved regions of myoglobin from four other globins. The automated procedure described here has been incorporated into the program COMPOSER.  相似文献   

12.
Using an information theoretic formalism, we optimize classes of amino acid substitution to be maximally indicative of local protein structure. Our statistically-derived classes are loosely identifiable with the heuristic constructions found in previously published work. However, while these other methods provide a more rigid idealization of physicochemically constrained residue substitution, our classes provide substantially more structural information with many fewer parameters. Moreover, these substitution classes are consistent with the paradigmatic view of the sequence-to-structure relationship in globular proteins which holds that the three-dimensional architecture is predominantly determined by the arrangement of hydrophobic and polar side chains with weak constraints on the actual amino acid identities. More specific constraints are imposed on the placement of prolines, glycines, and the charged residues. These substitution classes have been used in highly accurate predictions of residue solvent accessibility. They could also be used in the identification of homologous proteins, the construction and refinement of multiple sequence alignments, and as a means of condensing and codifying the information in multiple sequence alignments for secondary structure prediction and tertiary fold recognition. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence.  相似文献   

14.
We investigated the conservation of sidechain conformation for each residue within a homologous family of proteins in the Protein Data Bank (PDB) and performed sidechain modeling using this information. The information was represented by the probability of conserved sidechain torsional angles obtained from many families of proteins, and these were calculated for a pair of residues at topologically equivalent positions as a result of structural alignment. Probabilities were obtained for a pair of same amino acids and for a pair of different amino acids. The correlation between environmental residues and the fluctuation of probability was examined for the pair of same amino acid residues, and the simple probability was calculated for the pair of different amino acids. From the results on the same amino acid pairs, 17 amino acids, except for Ala, Gly, and Pro, were divided into two types: those that were influenced and those that were not influenced by the environmental residues. From results on different amino acid pairs, a replacement between large residues, such as Trp, Phe, and Tyr, was performed assuming conservation of their torsional angles within a homologous family of proteins. We performed sidechain modeling for 11 known proteins from their native and modeled backbones, respectively. With the native backbones, the percentage of the χ1 angle correct within 30° was found to be 67% and 80% for all and core residues, respectively. With the modeled backbones, the percentage of the correct χ1 angle was found to be 60% and 72% for all and core residues, respectively. To estimate an upper limit on the accuracy for predicting sidechain conformations, we investigated the probability of conserved sidechain torsional angles for highly similar proteins having > 90% sequence identity and <2.5-Å X-ray resolution. In those proteins, 83% of the sidechain conformations were conserved for the χ1 angle. Proteins 31:355–369, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
We have used the occluded surface algorithm to estimate the packing of both buried and exposed amino acid residues in protein structures. This method works equally well for buried residues and solvent-exposed residues in contrast to the commonly used Voronoi method that works directly only on buried residues. The atomic packing of individual globular proteins may vary significantly from the average packing of a large data set of globular proteins. Here, we demonstrate that these variations in protein packing are due to a complex combination of protein size, secondary structure composition and amino acid composition. Differences in protein packing are conserved in protein families of similar structure despite significant sequence differences. This conclusion indicates that quality assessments of packing in protein structures should include a consideration of various parameters including the packing of known homologous proteins. Also, modeling of protein structures based on homologous templates should take into account the packing of the template protein structure.  相似文献   

16.
Takano K  Yamagata Y  Yutani K 《Biochemistry》2000,39(29):8655-8665
To clarify the role of amino acid residues at turns in the conformational stability and folding of a globular protein, six mutant human lysozymes deleted or substituted at turn structures were investigated by calorimetry, GuHCl denaturation experiments, and X-ray crystal analysis. The thermodynamic properties of the mutant and wild-type human lysozymes were compared and discussed on the basis of their three-dimensional structures. For the deletion mutants, Delta47-48 and Delta101, the deleted residues are in turns on the surface and are absent in human alpha-lactalbumin, which is homologous to human lysozyme in amino acid sequence and tertiary structure. The stability of both mutants would be expected to increase due to a decrease in conformational entropy in the denatured state; however, both proteins were destabilized. The destabilizations were mainly caused by the disappearance of intramolecular hydrogen bonds. Each part deleted was recovered by the turn region like the alpha-lactalbumin structure, but there were differences in the main-chain conformation of the turn between each deletion mutant and alpha-lactalbumin even if the loop length was the same. For the point mutants, R50G, Q58G, H78G, and G37Q, the main-chain conformations of these substitution residues located in turns adopt a left-handed helical region in the wild-type structure. It is thought that the left-handed non-Gly residue has unfavorable conformational energy compared to the left-handed Gly residue. Q58G was stabilized, but the others had little effect on the stability. The structural analysis revealed that the turns could rearrange the main-chain conformation to accommodate the left-handed non-Gly residues. The present results indicate that turn structures are able to change their main-chain conformations, depending upon the side-chain features of amino acid residues on the turns. Furthermore, stopped-flow GuHCl denaturation experiments on the six mutants were performed. The effects of mutations on unfolding-refolding kinetics were significantly different among the mutant proteins. The deletion/substitutions in turns located in the alpha-domain of human lysozyme affected the refolding rate, indicating the contribution of turn structures to the folding of a globular protein.  相似文献   

17.

Background  

The hydrogen bond patterns between mainchain atoms in protein structures not only give rise to regular secondary structures but also satisfy mainchain hydrogen bond potential. However, not all mainchain atoms can be satisfied through hydrogen bond interactions that arise in regular secondary structures; in some locations sidechain-to-mainchain hydrogen bonds are required to provide polar group satisfaction. Buried polar residues that are hydrogen-bonded to mainchain amide atoms tend to be highly conserved within protein families, confirming that mainchain architecture is a critical restraint on the evolution of proteins. We have investigated the stabilizing roles of buried polar sidechains on the backbones of protein structures by performing an analysis of solvent inaccessible residues that are entirely conserved within protein families and superfamilies and hydrogen bonded to an equivalent mainchain atom in each family member.  相似文献   

18.
Amino acid substitution tables are calculated for residues in membrane proteins where the side chain is accessible to the lipid. The analysis is based upon the knowledge of the three-dimensional structures of two homologous bacterial photosynthetic reaction centers and alignments of their sequences with the sequences of related proteins. The patterns of residue substitutions show that the lipid-accessible residues are less conserved and have distinctly different substitution patterns from the inaccessible residues in water-soluble proteins. The observed substitutions obtained from sequence alignments of transmembrane regions (identified from, e.g., hydrophobicity analysis) can be compared with the patterns derived from the substitution tables to predict the accessibility of residues to the lipid. A Fourier transform method, similar to that used for the calculation of a hydrophobic moment, is used to detect periodicity in the predicted accessibility that is compatible with the presence of an alpha-helix. If the putative transmembrane region is identified as helical, then the buried and exposed faces can be discriminated. The presence of charged residues on the lipid-exposed face can help to identify the regions that are in contact with the polar environment on the borders of the bilayer, and the construction of a meaningful three-dimensional model is then possible. This method is tested on an alignment of bacteriorhodopsin and two related sequences for which there are structural data at near atomic resolution.  相似文献   

19.
MOTIVATION: Most proteins have evolved to perform specific functions that are dependent on the adoption of well-defined three-dimensional (3D) structures. Specific patterns of conserved residues in amino acid sequences of divergently evolved proteins are frequently observed; these may reflect evolutionary restraints arising both from the need to maintain tertiary structure and the requirement to conserve residues more directly involved in function. Databases of such sequence patterns are valuable in identifying distant homologues, in predicting function and in the study of evolution. RESULTS: A fully automated database of protein sequence patterns, Functional Protein Sequence Pattern Database (FPSPD), has been derived from the analysis of the conserved residues that are predicted to be functional in structurally aligned homologous families in the HOMSTRAD database. Environment-dependent substitution tables, evolutionary trace analysis, solvent accessibility calculations and 3D-structures were used to obtain the FPSPD. The method yielded 3584 patterns that are considered functional and 3049 patterns that are probably functional. FPSPD could be useful for assigning a protein to a homologous superfamily and thereby providing clues about function. AVAILABILITY: FPSPD is available at http://www-cryst.bioc.cam.ac.uk/~fpspd/  相似文献   

20.
Conservation of residue interactions in a family of Ca-binding proteins   总被引:1,自引:0,他引:1  
In the TNC family of Ca-binding proteins (calmodulin, parvalbumin, intestinal calcium binding protein and troponin C) approximately 70 well-conserved amino acid sequences and six crystal structures are known. We find a clear correlation between residue contacts in the structures and residue conservation in the sequences: residues with strong sidechain-sidechain contacts in the three-dimenesional structure tend to be the more conserved in the sequence. This is one way to quantify the intuitive notion of the importance of sidechain interactions for maintaining protein three-dimensional structure in evolution and may usefully be taken into account in planning point mutations in protein engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号