首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Xanthine oxidase was purified from human milk in yields comparable with those obtained from bovine milk. The freshly purified enzyme appeared homogeneous in gel permeation FPLC and SDS-PAGE, consistent with its being a homodimer with total M(r) 290,000 +/- 6000. The ultraviolet/visible absorption spectrum differed only slightly from that of bovine milk enzyme and showed an A280/A450 ratio of 5.13 +/- 0.29, indicating a high degree of purity. Xanthine oxidase activities of purified enzyme varied with batches of milk, ranging between 3 and 46 mU/mg protein; values that are some two to three orders of magnitude smaller than those shown by the most highly purified samples of bovine milk enzyme. Direct comparison with commercially-available bovine milk enzyme showed that activities involving xanthine as reducing substrate were 1-6% that of the bovine enzyme, whereas those involving NADH, in contrast, were of the same order for the two enzymes. Anaerobic bleaching experiments indicated that less than 2% of the human enzyme was present as a form active with xanthine. These findings, together with the activity data, are consistent with a very high content, possibly greater than 98%, of demolybdo- and/or desulpho-forms of human enzyme, both of which occur, to a lesser extent, in bovine xanthine oxidase. Molybdenum assay indicated that demolybdo-enzyme could only account for some 26% of this inactive component, suggesting that desulpho-enzyme may account for the remainder.  相似文献   

2.
Xanthine oxidase (oxidoreductase; XOR) and aldehyde oxidase (AO) are similar in protein structure and prosthetic group composition, but differ in substrate preference. Here we show that mutation of two amino acid residues in the active site of human XOR for purine substrates results in conversion of the substrate preference to AO type. Human XOR and its Glu803-to-valine (E803V) and Arg881-to-methionine (R881M) mutants were expressed in an Escherichia coli system. The E803V mutation almost completely abrogated the activity towards hypoxanthine as a substrate, but very weak activity towards xanthine remained. On the other hand, the R881M mutant lacked activity towards xanthine, but retained slight activity towards hypoxanthine. Both mutants, however, exhibited significant aldehyde oxidase activity. The crystal structure of E803V mutant of human XOR was determined at 2.6 A resolution. The overall molybdopterin domain structure of this mutant closely resembles that of bovine milk XOR; amino acid residues in the active centre pocket are situated at very similar positions and in similar orientations, except that Glu803 was replaced by valine, indicating that the decrease in activity towards purine substrate is not due to large conformational change in the mutant enzyme. Unlike wild-type XOR, the mutants were not subject to time-dependent inhibition by allopurinol.  相似文献   

3.
Studies were conducted to compare human and bovine lipoprotein lipase (LPL) preparations with regard to immunological cross-reactivity and substrate specificity. LPL was partially purified from human milk. An antiserum against the human LPL preparation was produced in a goat. This antiserum inhibited LPL enzymatic activity in human milk and in human post-heparin plasma. Neither bovine milk nor bovine post-heparin plasma LPL enzymatic activity was inhibited by this antiserum. These findings suggest that there are significant structural differences between the human and bovine enzymes in domains that are involved in enzymatic activity. Human and bovine post-heparin plasma and partially purified preparations of LPL from human and bovine milk were compared with regard to substrate specificity, by comparing their lipolytic activities against triglyceride, cholesteryl esters, and retinyl esters. Only the partially purified bovine milk LPL preparation possessed retinyl palmitate hydrolase activity. The results suggest that this latter activity may be the result of a previously unrecognized contaminant in the commonly used LPL preparations from bovine milk.  相似文献   

4.
Human liver microsomal epoxide hydrase has been highly purified to a specific activity (570 to 620 nmol/min/mg of protein) comparable to that of the rat enzyme using styrene oxide as substrate. Like the purified rat liver microsomal epoxide hydrase, the human enzyme has a minimum molecular weight of 49,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and exhibits broad substrate specificity toward a variety of alkene and arene oxides. Despite these similarities, the human and rat enzymes are different proteins as judged by their immunochemical properties as well as their relative catalytic activities toward certain substrates.  相似文献   

5.
The XOR activity in human plasma was measured by quantifying the XOR-derived uric acid (UA) in plasma using the high-performance liquid chromatography (HPLC) equipped with a UV detector. Chromatographic separation consisted of the mobile phase (a mixture of 0.1% trifluoroacetic acid in Milli-Q water and 0.085% trifluoroacetic acid in acetonitrile in a mix ratio of 99:1) running through a Zorbax StableBond SB-C(18) column at a flow-rate of 1 ml/min. Deproteinization with heat-treatment of plasma samples after the reaction was used in the assay to avoid splitting of the UA and xanthine peaks caused by acid deproteinization that could interfere the accurate determination of human plasma XOR activity in our case. Based on the examination of the dependence of XOR activity on added amounts of xanthine and reaction times, the amount of xanthine and reaction time for XOR activity assay were determined to prevent the errors caused by the limiting effect of substrates and plateau phase of the reaction. Using this method, human plasma XOR activities of 25 healthy people were measured. The average human plasma XOR activity was 2.1+/-0.8 (x10(-3) U/ml).  相似文献   

6.
Isolation and characterization of human breast milk lipoamidase   总被引:1,自引:0,他引:1  
The mean lipoamidase activity in human breast milk was found to be 0.073 nmol/min per mg (S.D. = 0.028, range = 0.020-0.123, n = 44). The mean lipoamidase activity is approximately 3-fold higher in milk than that in serum (0.023 nmol/min per mg, S.D. = 0.016, range = 0.001-0.059, n = 32). Lipoamidase was purified to 4400-fold by a four-step procedure from 330 ml of human breast milk. The purified enzyme was identified as a single band (Mr = 135,000) by sodium dodecyl sulfate/polyacrylamide electrophoresis. Analysis by Edman degradation indicated that the N-terminal amino acid was glycine. These results strongly suggest that milk lipoamidase is composed of a single polypeptide chain. The enzyme is considered to be a glycoprotein since it reacted positively to periodate-Schiff (PAS) staining. The isoelectric point of the enzyme was 4.2. After treatment of lipoamidase with sialidase, its position on isoelectric focusing gel moved from pH 4.2 to 4.6. This is strongly indicative that lipoamidase contains sialic acid residues. The optimum pH for the enzyme activity is 7.0. The Michaelis constant (KM) for lipoyl p-aminobenzoate is calculated as 25 microM. The enzyme activity was completely lost by heating 60 degrees C for 5 min. The effects of thiol-reactive agents, such as 2-mercaptoethanol (ME) and p-chloromercuribenzoate, were not significant. However, the enzyme activity was completely inhibited by 50 microM diisopropylfluorophosphate. Thus, this enzyme seemed to contain an essential serine residue in the active site.  相似文献   

7.
Xanthine oxidase from human liver: purification and characterization   总被引:7,自引:0,他引:7  
Xanthine oxidase [EC 1.2.3.2] was purified 2000-fold from human liver. The last step of the procedure involved affinity chromatography. The resulting preparation showed two closely migrating bands of enzyme activity after gel electrophoresis under nondenaturing conditions. No other proteins were detected on these gels. The average particle mass of the enzyme was 300 kDa as determined by size-exclusion chromatography. This together with results of gel electrophoresis under denaturing conditions suggested that the native enzyme was composed of two subunits of approximately 150 kDa each. The electrophoretic patterns also indicated that a portion of these subunits had undergone partial proteolysis. The substrate specificity of the purified human enzyme was studied using an assay in which phenazine ethosulfate coupled the transfer of electrons from the reduced enzyme to cytochrome c. Hypoxanthine, 2-hydroxypurine, xanthine, 2-aminopurine, and adenine were among the most efficient purine substrates studied. Most purine nucleosides tested were oxidized at detectable rates, but with relatively high Km values. The 2'-deoxyribonucleosides were more efficient substrates than were the corresponding ribonucleosides or arabinonucleosides. In a direct comparison with xanthine oxidase from bovine milk, the human enzyme showed a similar specificity toward purine substrates. However, considerable differences between the bovine and human enzymes were observed with nucleoside substrates. With xanthine as the substrate for the human enzyme, 20% of the total electron flow was univalently transferred to oxygen to produce superoxide radicals.  相似文献   

8.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37, 000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 μ;mol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100.

The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29, 000 D and 26, 000 D to give a native molecular weight of 55, 000 D.

The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. l-chloro-2, 4-dinltrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse.

Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

9.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37,000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 mumol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100. The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29,000 D and 26,000 D to give a native molecular weight of 55,000 D. The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. 1-chloro-2,4-dinitrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse. Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

10.
1. The catalytic properties of xanthine oxidase in bovine milk (EC 1.2.3.2) are dependent on the state of the enzyme, i.e. whether free or bound to the fat-globule membrane. Oxidase activity of the membrane-bound enzyme towards NADH is enhanced relative to that towards xanthine. This reflects a change in the relative K(m) values and enables the ratio of xanthine to NADH oxidase activities (X/N) to be used as a parameter for the relative amounts of free and membrane-bound xanthine oxidase in milk fractions. 2. Chromatography of buttermilk on Sepharose 2B yielded an excluded fraction, BM(1), with xanthine oxidase activity. The remaining xanthine oxidase activity was eluted as a single broad peak. This was further resolved on Sephadex G-200 into an excluded fraction, BM(2), and free xanthine oxidase. Fractions BM(1) and BM(2) had X/N values in the range 45-65, which is characteristic of membrane-bound xanthine oxidase. Purified xanthine oxidase has a mean X/N value of 110.3. Addition of fraction BM(1), heated to remove associated enzyme activities, to purified xanthine oxidase progressively enhanced its NADH oxidase activity to a value where its X/N value was characteristic of membrane-bound xanthine oxidase. This was shown to be due to binding of free enzyme to heated fraction BM(1). The binding constant and stoicheiometry were determined. 4. Proteolytic digestion of fraction BM(1) liberated free xanthine oxidase from the fat-globule membrane with a corresponding alteration in X/N value.  相似文献   

11.
We have previously shown the presence of two different forms of glutathione disulfide (GSSG)-stimulated Mg2+-ATPases in human erythrocytes. We have now investigated a low-Km form of the enzyme from human erythrocytes. Purification of the enzyme was performed to apparent homogeneity involving procedures of affinity chromatography and gel filtration. The enzyme was composed of two non-identical subunits of Mr = 82K and 62K. The enzyme reconstituted into phospholipid vesicles showed both GSSG-stimulated Mg2+-ATPase activity (285 nmol Pi released/mg protein/min) and active GSSG transport activity (320 nmol GSSG/mg protein/min). The amino acid composition of the enzyme was similar to that of the enzyme purified from cytoplasmic membranes of human hepatocytes. These enzymes were immunologically cross reactive. These results indicate that this enzyme functions in the active transport of GSSG as it possibly does in hepatocytes.  相似文献   

12.
Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of HNK-1 carbohydrate, which is spatially and temporally regulated in the nervous system. To clarify the enzymatic properties of the respective glucuronyltransferases, we established an expression system for producing large amounts of soluble forms of flag-tagged human GlcAT-P and GlcAT-S in Escherichia coli. Approximately 15 and 6 mg of enzymatically active flag-GlcAT-P and flag-GlcAT-S were purified from E. coli cells in 5 liters of culture medium, respectively. These recombinant enzymes transferred GlcA to a glycoprotein acceptor, asialo-orosomucoid (ASOR), as well as a glycolipid acceptor, paragloboside. The specific activity of the recombinant GlcAT-P (1100 nmol/min/mg) toward a glycoprotein acceptor, ASOR, was comparable to that of the enzyme (4300 nmol/min/mg) purified from rat brain. Phosphatidylinositol (PI) is specifically required for expression of the activity of the recombinant enzymes toward a glycolipid acceptor, paragloboside. The recombinant GlcAT-P was highly specific for the terminal type II structure, Galbeta1-4GlcNAc, while the recombinant GlcAT-S recognized not only the type II structure, Galbeta1-4GlcNAc, but also the type I structure, Galbeta1-3GlcNAc. These acceptor specificities were similar to those of the native enzymes.  相似文献   

13.
Using [1-14C]oleate-labelled autoclaved Escherichia coli as substrate, we demonstrate that many, but not all, commercial preparations of xanthine oxidase contain phospholipase A2 activity as a contaminant. Phospholipase A2 activity (64.3-545.6 nmol phospholipid hydrolyzed per min per mg protein) was optimal in the neutral to alkaline pH range, was Ca2+-dependent, and was unaffected by the addition of xanthine. Phospholipase A2 activity was totally inhibited by 1.0 mM EDTA while radical production by xanthine plus xanthine oxidase was unaffected by EDTA. Even chromatographically purified xanthine oxidase (Sigma Grade III) contained substantial phospholipase A2 activity (64.3 nmol/min per mg). Since the preparation of xanthine oxidase employs proteolytic digestion of milk or buttermilk by pancreatin, an extract of pancreas which is an organ rich in phospholipase A2 activity, we speculate that the contaminant phospholipase A2 is introduced by this treatment. Because xanthine oxidase is used extensively to study free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular phospholipase A2 may have influenced previously published reports and such studies in the future should be interpreted with care.  相似文献   

14.
Tyrosine hydroxylase (TH) was purified from the soluble fraction of human adrenal glands. The enzyme in human adrenal glands that was purified to apparent homogeneity had an apparent Mr of about 280,000. Sodium dodecyl sulfate (SDS) gel electrophoresis gave a single band with a Mr of 60,000 similar to the Mr of bovine adrenal enzyme. The enzyme is considered to be composed of four identical subunits. The specific activity of the final preparation was approximately 310 nmol 3,4-dihydroxyphenylalanine (DOPA) formed/min/mg protein. The use of the “Western Blot” method showed that human adrenal TH did not aggregate as rapidly as bovine adrenal TH.  相似文献   

15.
Millar TM 《FEBS letters》2004,562(1-3):129-133
One electron reductions of oxygen and nitrite by xanthine oxidase form peroxynitrite. The nitrite and oxygen reducing activities of xanthine oxidase are regulated by oxygen with K(oxygen) 26 and 100 microM and K(nitrite) 1.0 and 1.1 mM with xanthine and NADH as donor substrates. Optimal peroxynitrite formation occurs at 70 microM oxygen with purine substrates. Kinetic parameters: V(max) approximately 50 nmol/min/mg and K(m) of 22, 36 and 70 microM for hypoxanthine, pterin and nitrite respectively. Peroxynitrite generation is inhibited by allopurinol, superoxide dismutase and diphenylene iodonium. A role for this enzyme activity can be found in the antibacterial activity of milk and circulating xanthine oxidase activity.  相似文献   

16.
Xanthine oxidoreductase (XOR) has been purified from lactating mouse mammary tissue and its properties and developmental expression have been characterized. XOR was purified 80-fold in two steps using benzamidine-Sepharose affinity chromatography. The purified enzyme had a specific activity of 5.7 U/mg and an activity to flavin ratio of 192. SDS-polyacrylamide gel electrophoresis showed that it was composed of a single (150 kDa) band and N-terminal sequence analysis verified that it was intact mouse XOR. Isoelectric focusing showed that purified XOR was composed of three catalytically active, electrophoretic variants with pI values of 7.55, 7.65, and 7.70. The majority of the XOR activity in both pregnant and lactating mammary glands was shown to exist as NAD+-dependent dehydrogenase (XD form), while the enzyme in freshly obtained mouse milk exits as O2-dependent oxidase (XO form). The activity and protein levels of XOR selectively increased in mammary tissue during pregnancy and lactation. The time course of these increases was biphasic and correlated with the functional maturation of the mammary gland. These results indicate that XOR may have novel, mammary gland-specific functions, in addition to its role in purine metabolism.  相似文献   

17.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

18.
Xanthine dehydrogenase (EC 1.2.1.37) is the first enzyme in the degradative pathway by which fungi convert purines to ammonia. In vivo, the activity is induced 6-fold by growth in uric acid. Hypoxanthine, xanthine, adenine, or guanine also induce enzyme activity but to a lesser degree. Immunoelectrophoresis using monospecific antibodies prepared against Neurospora crassa xanthine dehydrogenase shows that the induced increase in enzyme activity results from increased numbers of xanthine dehydrogenase molecules, presumably arising from de novo enzyme synthesis. Xanthine dehydrogenase has been purified to homogeneity by conventional methods followed by immunoabsorption to monospecific antibodies coupled to Sepharose 6B. Electrophoresis of purified xanthine dehydrogenase reveals a single protein band which also exhibits enzyme activity. The average specific activity of purified enzyme is 140 nmol of isoxanthopterine produced/min/mg. Xanthine dehydrogenase activity is substrate-inhibited by xanthine (0.14 mM), hypoxanthine (0.3 mM), and pterine (10 micron), is only slightly affected by metal binding agents such as KCN (6 mM), but is strongly inhibited by sulfhydryl reagents such as p-hydroxymercuribenzoate (2 micron). The molecular weight of xanthine dehydrogenase is 357,000 as calculated from a sedimentation coefficient of 11.8 S and a Stokes radius of 6.37 nm. Sodium dodecyl sulfate-gel electrophoresis of the enzyme reveals a single protein band having a molecular weight of 155,000. So the xanthine dehydrogenase protein appears to be a dimer. In contrast to xanthine dehydrogenases from animal sources which typically possess as prosthetic groups 2 FAD molecules, 2 molybdenum atoms, 8 atoms of iron, and 8 acid-labile sulfides, the Neurospora enzyme contains 2 FAD molecules, 1 molybdenum atom, 12 atoms of iron, and 14 eq of labile sulfide/molecule. The absorption spectrum of the enzyme shows maxima between 400 and 500 nm typical of a non-heme iron-containing flavoprotein.  相似文献   

19.
The enzyme xanthine oxidoreductase (XOR) catalyses the last step of purine degradation in the highest uricotelic primates as a rate-limiting enzyme in nucleic acid catabolism. Although XOR has been studied for more than a century, this enzyme continues to arouse interest because its involvement in many pathological conditions is not completely known. XOR is highly evolutionarily conserved; moreover, its activity is very versatile and tuneable at multiple-levels and generates both oxidant and anti-oxidant products. This review covers the basic information on XOR biology that is essential to understand its enzymatic role in human pathophysiology and provides a comprehensive catalogue of the experimental and human pathologies associated with increased serum XOR levels. The production of radical species by XOR oxidase activity has been intensively studied and evaluated in recent decades in conjunction with the cytotoxic consequences and tissue injuries of various pathological conditions. More recently, a role has emerged for the activity of endothelium-bound enzymes in inducing the vascular response to oxidative stress, which includes the regulation of pro-inflammatory and pro-thrombotic activities of endothelial cells. The possible physiological functions of circulating XOR and the products of its enzyme activity are presented here together with their implications in cardiovascular and metabolic diseases.  相似文献   

20.
Uroporphyrinogen decarboxylase (EC 4.1.1.37) has been purified 4419-fold to a specific activity of 58.3 nmol of coproporphyrinogen III formed/min per mg of protein (with pentacarboxyporphyrinogen III as substrate) from human erythrocytes by adsorption to DEAE-cellulose, (NH4)2SO4 fractionation, gel filtration, phenyl-Sepharose chromatography and polyacrylamide-gel electrophoresis. Progressive loss of activity towards uroporphyrinogens I and III occurred during purification. Experiments employing immunoprecipitation, immunoelectrophoresis and titration with solid-phase antibody indicated that all the uroporphyrinogen decarboxylase activity of human erythrocytes resides in one protein, and that the substrate specificity of this protein had changed during purification. The purified enzyme had a minimum mol.wt. of 39 500 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Gel filtration gave a mol.wt. of 58 000 for the native enzyme. Isoelectric focusing showed a single band with a pI of 4.60. Reaction with N-ethylmaleimide abolished both catalytic activity and immunoreactivity. Incubation with substrates or porphyrins prevented inactivation by N-ethylmaleimide. An antiserum raised against purified erythrocyte enzyme precipitated more than 90% of the uroporphyrinogen decarboxylase activity from human liver. Quantitative immunoprecipitation and crossed immunoelectrophoresis showed that the erythrocyte and liver enzymes are very similar but not identical. The differences observed may reflect secondary modification of enzyme structure by proteolysis or oxidation of thiol groups, rather than a difference in primary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号