共查询到20条相似文献,搜索用时 0 毫秒
1.
The orientation of beta-sheets in porin. A polarized Fourier transform infrared spectroscopic investigation. 总被引:2,自引:2,他引:2
下载免费PDF全文

The orientation of the protein secondary structures in porin is investigated by Fourier transform infrared (FTIR) linear dichroism of oriented multilayers of porin reconstituted in lipid vesicles. The FTIR absorbance spectrum shows the amide I band at 1,631 cm-1 and several shoulders around 1,675 cm-1 and at 1,696 cm-1 indicative of antiparallel beta-sheets. The amide II is centered around 1,530 cm-1. The main dichroic signals peak at 1,738, 1,698, 1,660, 1,634, and 1,531 cm-1. The small magnitude of the 1,634 cm-1 and 1,531 cm-1 positive dichroism bands demonstrates that the transition moments of the amide I and amide II vibrations are on the average tilted at 47 degrees +/- 3 degrees from the membrane normal. This indicates that the plane of the beta-sheets is approximately perpendicular to the bilayer. From these IR dichroism results and previously reported diffuse x-ray data which revealed that a substantial number of beta-strands are nearly perpendicular to the membrane, a model for the packing of beta-strands in porin is proposed which satisfies both IR and x-ray requirements. In this model, the porin monomer consists of at least two beta-sheet domains, both with their plane perpendicular to the membrane. One sheet has its strands direction lying nearly parallel to the membrane normal while the other sheet has its strands inclined at a small angle away from the membrane plane. 相似文献
2.
N Sekiya A Kishigami H Naoki C W Chang K Yoshihara R Hara T Hara F Tokunaga 《FEBS letters》1991,280(1):107-111
Structural studies of retinochrome, and its photoproduct, lumiretinochrome, were done by Fourier transform infrared difference spectroscopy. The absorption bands in the carbonyl stretching region which shift in D2O show the changes in the protein part during the photoreaction. Strong absorption bands in the finger-print region show that the all-trans-retinal chromophore in retinochrome isomerizes to the 11-cis-retinal chromophore in lumiretinochrome upon illumination with yellow-green light at 83K. 相似文献
3.
The secondary structure of streptokinase (Sk) in aqueous solution was quantitatively examined by using Fourier transform infrared (FT-IR) spectroscopy. Resolution enhancement techniques, including Fourier deconvolution and derivative spectroscopy, were combined with band curve-fitting procedures to quantitate the spectral information from the amide I bands. Nine component bands were found under the broad, nearly featureless amide I bands which reflect the presence of various substructures. The relative areas of these component bands indicate an amount of beta-sheet between 30 and 37% and an alpha-helix content of only 12-13% in Sk. Further conformational substructures are assigned to turns (25-26%) and to random structures (15-16%). Additionally, the correlation of a pronounced component band near 1640 cm-1 (10-16% fractional area) with the possible presence of 3(10)-helices is discussed. 相似文献
4.
Zhang Haoming Yamamoto Yasusi Ishikawa Yasuo Zhang Weila Fischer Gad Wydrzynski Tom 《Photosynthesis research》1997,52(3):215-223
Degradation of the reaction center-binding protein D1 of Photosystem II (PS II) during photoinhibition is dependent on the action of active oxygen species and/or D1-specific proteases. Protein conformational changes may be involved in the process of D1 degradation. In the present study, we determined the effect of H2O2 on spinach PS II-enriched membranes and core complexes with respect to electron transport, Mn content and protein secondary structural changes as measured by Fourier transform infrared (FTIR) spectroscopy. H2O2 is effective in removing catalytic Mn in PS II, especially in PS II core complexes depleted of OEC18 and OEC24, impairing the donor-side. By quantitative analysis of the amide I band (1600 – 1700 cm-1) with both aqueous and dehydrated PS II samples, we found that no significant secondary structural changes are associated with H2O2 treatment in the dark, even though there is some cleavage of the D1 protein by H2O2 treatment as determined by Western analysis with specific antibodies. In contrast, a large decrease in the -helices in the PS II core occurs, with or without H2O2 treatment, after 20 min strong illumination and there is more extensive degradation of the D1 protein. Our results suggest that high light enhances the cleavage of the D1 protein which is reflected in the large protein secondary structural changes in PS II detected by FTIR measurements. 相似文献
5.
Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin.
下载免费PDF全文

D Garcia-Quintana A Francesch P Garriga A R de Lera E Padrós J Manyosa 《Biophysical journal》1995,69(3):1077-1082
The study of the structural differences between rhodopsin and its active form (metarhodopsin II) has been carried out by means of deconvolution analysis of infrared spectra. Deconvolution techniques allow the direct identification of the spectral changes that have occurred, which results in a significantly different view of the conformational changes occurring after activation of the receptor as compared with previous difference spectroscopy analysis. Thus, a number of changes in the bands assigned to solvent-exposed domains of the receptor are detected, indicating significant decreases in extended (beta) sequences and in reverse turns, and increases in irregular/aperiodic sequences and in helices with a non-alpha geometry, whereas there is no decrease in alpha-helices. In addition to secondary structure conversions, qualitative alterations within a given secondary structure type are detected. These are seen to occur in both reverse turns and helices. The nature of this spectral change is of great importance, since a clear alteration in the helices bundle core is detected. All these changes indicate that the rhodopsin --> metarhodopsin II transition involves not a minor but a major conformational rearrangement, reconciling the infrared data with the energetics of the activation process. 相似文献
6.
Ionization state of the coenzyme 5'-phosphate ester in cytosolic aspartate aminotransferase. A Fourier transform infrared spectroscopic study 总被引:1,自引:0,他引:1
In order to determine the ionization state of the 5'-phosphate of bound pyridoxal phosphate, a Fourier transform infrared spectroscopic study of cytosolic aspartate aminotransferase has been carried out. Dianionic and monoanionic phosphate monoesters give rise to two bands each in the infrared spectrum [Shimanouchi, T., Tsuboi, M., & Kyogoku, Y. (1964) Adv. Chem. Phys. 8, 435-498]. These bands can be identified in infrared spectra of the free coenzyme in solution. Due to interfering bands arising from the protein, only the band assigned to the symmetric stretching of the dianionic phosphate is observed in holoenzyme solutions. The integrated intensity of this band does not change with pH in the range 5.3-8.6, while for free pyridoxal phosphate, the integrated intensity of the same band changes with pH according to the pK value expected for the 5'-phosphate group in solution. Moreover, the value of the integrated intensity for the bound cofactor is close to the value given by free cofactor at pH 8-9. These results suggest that the 5'-phosphate of the bound cofactor remains mostly dianionic throughout the investigated pH range and disfavor other interpretations in terms of ionization of the phosphate group on the basis of the nuclear magnetic resonance 31P chemical shift-pH titration curve of holoenzyme [Schnackerz, K. D. (1984) in Chemical and Biological Aspects of Vitamin B6 Catalysis (Evangelopoulos, E. A., Ed.) Part A, pp 195-208, Alan R. Liss, New York].(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
The proton-pumping NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron transfer is accomplished by flavin mononucleotide (FMN) and a series of iron-sulfur (Fe/S) clusters. A novel mechanism has been proposed wherein the electron transfer reaction induces conformational changes that subsequently lead to the translocation of protons. Redox-induced Fourier transform infrared difference spectra have been obtained, showing strong conformational changes in the amide I region. The amplitude of the signal is pH dependent, as expected for an energy coupling step in the enzymes reaction. Furthermore, pH-dependent protonation events and quinone binding were detected. 相似文献
8.
V A Sirotkin A N Zinatullin B N Solomonov D A Faizullin V D Fedotov 《Biochimica et biophysica acta》2001,1547(2):359-369
Calorimetric heat effects and structural rearrangements assessed by means of Fourier transform infrared (FTIR) amide I spectra were followed by immersing dry human serum albumin and bovine pancreatic alpha-chymotrypsin in low water organic solvents and in pure water at 298 K. Enthalpy changes upon immersion of the proteins in different media are in a good linear correlation with the corresponding IR absorbance changes. Based on calorimetric and FTIR data the solvents were divided into two groups. The first group includes carbon tetrachloride, benzene, nitromethane, acetonitrile, 1,4-dioxane, n-butanol, n-propanol and pyridine where no significant heat evolution and structural changes were found during protein immersion. Due to kinetic reasons no significant protein-solvent interactions are expected in such systems. The second group of solvents includes dimethyl sulfoxide, methanol, ethanol, and water. Immersion of proteins in these media results in protein swelling and involves significant exothermic heat evolution and structural changes in the protein. Dividing of different media in the two groups is in a qualitative correlation with the solvent hydrophilicity defined as partial excess molar Gibbs free energy of water at infinite dilution in a given solvent. The first group includes the solvents with hydrophilicity exceeding 2.7 kJ/mol. More hydrophilic second group solvents have this energy values less than 2.3 kJ/mol. The hydrogen bond donating ability of the solvents also assists in protein swelling. Hydrogen bonding between protein and solvent is assumed to be a main factor controlling the swelling of dry solid proteins in the studied solvents. 相似文献
9.
A Difference Fourier transform infrared study of tyrosyl radical Z* decay in photosystem II.
下载免费PDF全文

Photosystem II (PSII) contains a redox-active tyrosine, Z* Difference Fourier transform infrared (FTIR) spectroscopy can be used to obtain structural information about this species, which is a neutral radical, Z*, in the photooxidized form. Previously, we have used isotopic labeling, inhibitors, and site-directed mutagenesis to assign a vibrational line at 1478 cm(-1) to Z*; these studies were performed on highly resolved PSII preparations at pH 7.5, under conditions where Q(A)(-) and Q(B)(-) make no detectable contribution to the vibrational spectrum (Kim, Ayala, Steenhuis, Gonzalez, Razeghifard, and Barry. 1998. Biochim. Biophys. Acta. 1366:330-354). Here, time-resolved infrared data associated with the reduction of tyrosyl radical Z* were acquired from spinach core PSII preparations at pH 6.0. Electron paramagnetic resonance spectroscopy and fluorescence control experiments were employed to measure the rate of Q(A)(-) and Z* decay. Q(B)(-) did not recombine with Z* under these conditions. Difference FTIR spectra, acquired over this time regime, exhibited time-dependent decreases in the amplitude of a 1478 cm(-1) line. Quantitative comparison of the rates of Q(A)(-) and Z* decay with the decay of the 1478 cm(-1) line supported the assignment of a 1478 cm(-1) component to Z*. Comparison with difference FTIR spectra obtained from PSII samples, in which tyrosine is labeled, supported this conclusion and identified other spectral components assignable to Z* and Z. To our knowledge, this is the first kinetic study to use quantitative comparison of kinetic constants in order to assign spectral features to Z*. 相似文献
10.
A Fourier transform infrared spectroscopic study of the molecular interaction of cholesterol with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 总被引:4,自引:0,他引:4
The temperature dependencies of the infrared spectra of pure and cholesterol-containing multibilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were studied using Fourier transform infrared techniques. A comparison of the spectroscopic data showed the retention of a melting phenomenon at 60 mol% cholesterol content, and the retention of some all-trans conformations in the liquid-crystalline phase. It is also demonstrated that at temperatures less than 30 degrees C, the cholesterol-containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine multibilayers still contain a small amount of pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, packed in an orthorhombic subcell lattice. Spectral changes were found in the absorptions characteristic of the phospholipid head groups. The addition of cholesterol results in changes in the ester bands, and demonstrates the induction by cholesterol of non-equivalent ester conformations. 相似文献
11.
Fourier transform infrared spectroscopic study of ion binding and intramolecular interactions in the polar head of digalactosyldiacylglycerol 总被引:2,自引:0,他引:2
Lipid bilayers composed of digalactosyldiacyl-glycerol (DGDG), that is, Galp1-6Galp1-3DAG, a non-ionic lipid of the thylakoid membrane of chloroplasts, aggregate in aqueous media containing mono- and divalent cations in amounts above a threshold concentration (Ct) of about 1.0, 4.7 and 10.0 mM for Ca2+, Mg2+ and Na+, respectively. In this work, we found that above Ct the DGDG membranes do not undergo fusion and that the aggregation can be reversed, or disrupted. This means that the perturbation induced by the salts results from adsorption, or complexation of the ions in the polar head of DGDG. To investigate this question, we used Fourier transform infrared (FTIR) spectroscopy to identify the molecular sites in DGDG which are modified by interaction, or adduct formation with CaCl2, MgCl2 and NaCl. We also determined whether the ions affect the intramolecular hydrogen bonding between the sn2 ester C = O and the carbon-6 of the -anomer of galactose (Gal). The major conclusions are: (i) the salts do not affect, at least directly, the, ester carbonyl region of DGDG, (ii) the most probable sites of binding, or adsorption, for the ions are the ring oxygen, and (iii) the ring hydroxyls are the sites of either ion complexation or intra- and intermolecular H-bonding in interacting DGDG membranes. Within this framework, the complexation of the ions with Gal might induce total or partial dehydration of the galactolipid headgroup and thus provides the means to overcome the repulsive hydration forces that hinder aggregation of the DGDG membranes.Abbreviations DGDG digalactosyldiacylglycerol - EDTA ethylenediaminetetracetic acid - FTIR Fourier transform infrared - Gal galactose - GIDG D-glucosyldiacylglycerol - Glyc glycerol - LHCII chloroplast light harvesting complex II - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PG phosphatidylglycerol - PS phosphatidylserine - SQDG sulfoquinovosyl-diacylglycerolCorrespondence to: M. Fragata 相似文献
12.
Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter 总被引:8,自引:0,他引:8
Fourier transform infrared spectroscopy has been used to study the secondary structure of the human erythrocyte glucose transporter after purification and reconstitution in erythrocyte lipids. The spectra indicate that the glucose transporter contains, in addition to the predominant alpha-helical structure, an appreciable amount of beta-structure and random coil conformation. A study of the time dependency of H-2H exchange revealed that more than 80% of the polypeptide backbone is readily accessible to the solvent. This result indicates that a portion of the intramembrane-spanning region of the membrane protein is exposed to the solvent, suggesting the existence of an intraprotein aqueous channel. The residual (10-20%) portion of the protein which exchanges slowly includes some alpha-helical structure, probably situated in a hydrophobic environment inside the membrane. The infrared spectra of transporter preparations were also examined after incubation with substrate and substrate analogues. Compared with the spectra recorded under conditions in which the "inward-facing" form predominates, a small but reproducible shift in the bands assigned to alpha-helical and beta-strand structures is observed after incubation with 4,6-O-ethylidene-D-glucose, which largely fixes the transporter in the "outward-facing" conformation. An increase of temperature, which is known to increase the proportion of transporter in the outward-facing conformation, results in a similar shift in this alpha-helical absorption band. 相似文献
13.
Oldenhof H Wolkers WF Bowman JL Tablin F Crowe JH 《Biochimica et biophysica acta》2006,1760(8):1226-1234
In situ Fourier transform infrared spectroscopy (FTIR) was used in order to obtain more insights in the underlying protective mechanisms upon freezing and drying of ABA-treated tissues of the moss Physcomitrella patens. The effects of different treatments on the membrane phase behaviour, glassy state, and overall protein secondary structure were studied. We found that growth on ABA resulted in the accumulation of sucrose: up to 22% of the tissue on a dry weight basis, compared to only 3.7% in non-ABA-treated tissues. Sucrose functions as a protectant during freezing and drying, but accumulation of sucrose alone is not sufficient for survival. ABA-treated tissue survives a freeze-thaw cycle down to -80 degrees C only after addition of an additional cryoprotectant (DMSO). Survival correlates with preservation of membrane phase behaviour. We found that ABA-treated P. patens can survive slow but not rapid drying down to water contents as low as 0.02 g H(2)O per g DW. Rapidly and slowly dried ABA-treated tissues were found to have similar sugar compositions and glass transition temperatures. The average strength of hydrogen bonding in the cytoplasmic glassy matrix, however, was found to be increased upon slow drying. In addition, slowly dried tissues were found to have a higher relative proportion of alpha-helical structures compared to rapidly dried tissues. 相似文献
14.
Differential scanning calorimetric and Fourier transform infrared spectroscopic investigations of cerebroside polymorphism 总被引:2,自引:0,他引:2
Calorimetric and Fourier transform infrared (FTIR) spectroscopic studies have been made of the polymorphism exhibited by bovine brain cerebroside-water systems, and the effect of cholesterol and dipalmitoylphosphatidylcholine (DPPC) upon this polymorphism was investigated. The conversion of the cerebroside from the thermodynamically stable to the metastable form is found to be accompanied by spectral changes, indicating a decrease in cerebroside headgroup hydration and a rearrangement of the hydrogen-bond network. The incorporation of low concentrations of cholesterol and DPPC into cerebroside bilayers broadens the thermal transitions associated with the cerebroside as a result of the disruption of cerebroside-cerebroside interactions. This disruption is evident in the spectra of cerebroside/cholesterol mixtures. 相似文献
15.
K J Rothschild O Bousché M S Braiman C A Hasselbacher J L Spudich 《Biochemistry》1988,27(7):2420-2424
Halorhodopsin (hR) is a light-driven chloride pump located in the cell membrane of Halobacterium halobium. Fourier transform infrared difference spectroscopy has been used to study structural alterations occurring during the hR photocycle. The frequencies of peaks attributed to the retinylidene chromophore are similar to those observed in the spectra of the related protein bacteriorhodopsin (bR), indicating that in hR as in bR an all-trans----13-cis isomerization occurs during formation of the early bathoproduct. Spectral features due to protein structural alterations are also similar for the bR and hR photocycles. For example, formation of the red-shifted primary photoproducts of both hR and bR results in similar carboxyl peaks in the 1730-1745-cm-1 region. However, in contrast to bR, no further changes are observed in the carboxyl region during subsequent steps in the hR photocycle, indicating that additional carboxyl groups are not directly involved in chloride translocation. Overall, the close similarity of vibrations in hR and bR photoproduct difference spectra supports the existence of some common elements in the molecular mechanisms of energy transduction and active transport by these two proteins. 相似文献
16.
Aspartic proteinases: Fourier transform infrared spectroscopic studies of a model of the active side.
下载免费PDF全文

We synthesized and studied by Fourier transform infrared spectroscopy nine monosalts of diamides as models for the active side of aspartic proteinases. One compound, the monosalt of meta-aminobenzoic acid diamide of fumaric acid (m-FUM), shows the same biological activity as pepsin with regard to the splitting of peptide bonds of the Pro-Thi-Glu-Phe-Phe(4-NO2)-Arg-Leu heptapeptide. The monosalt of m-FUM forms with oxindole a complex in which the carboxylic acid group of the monosalt of m-FUM is strongly hydrogen bonded with the O atom of the peptide bond of oxindole. When one water molecule is added to this complex, the strong field of the carboxylate group destabilizes an O-H bond of the water molecule. The distorted water molecule attacks the carbon atom of the peptide group, and the water proton transfers to the peptide N atom. Simultaneously, the C-N bond of the amide group is broken. Hence it is demonstrated that the catalytic mechanism of aspartic acid proteinases is a base catalysis. The results show that for this catalytic mechanism there are sufficient carboxylic and carboxylate groups, as well as a water molecule in the correct arrangement. It was also demonstrated with other monosalts of dicarboxylic acids that well-defined steric conditions of the carboxylic acid and the carboxylate group must be fulfilled to show hydrolytic activity with regard to oxindole molecules. 相似文献
17.
Visible absorption spectroscopic experiments show that the N intermediate is the main photoproduct of a highly hydrated film of the light-adapted bacteriorhodopsin (70% water by weight) at pH 10 and 274 K. The difference Fourier transform infrared spectrum between the N intermediate and unphotolyzed light-adapted bacteriorhodopsin was recorded under these conditions. A small amount of the M intermediate present did not affect this spectrum significantly. The difference spectrum exhibited a positive band at 1755 cm-1 (probably due to Asp-85) and a negative band at 1742 cm-1 (due to Asp-96), neither of which was observed for the M intermediate. The spectrum of the N intermediate at pH 7 was nearly identical with that at pH 10. Spectra at pH 10 also were measured with isotope-substituted samples. A vibrational band at 1692 cm-1 due to the peptide bond disappeared, and a band at 1558 cm-1 emerged upon formation of the N intermediate. The spectrum also displayed bands containing the N-H and C15-H in-plane bending vibrational modes at 1394 and 1303 cm-1. These frequencies are similar to those of the L intermediate while the intensities of these bands are larger than those in the L intermediate, suggesting that the Schiff bases of both the L and N intermediates have a strong hydrogen-bonding interaction with the protein and that the C12-H to C15-H region of the chromophore is less twisted in the N intermediate than in the L intermediate. 相似文献
18.
Harriëtte Oldenhof Willem F. Wolkers John L. Bowman Fern Tablin John H. Crowe 《Biochimica et Biophysica Acta (BBA)/General Subjects》2006
In situ Fourier transform infrared spectroscopy (FTIR) was used in order to obtain more insights in the underlying protective mechanisms upon freezing and drying of ABA-treated tissues of the moss Physcomitrella patens. The effects of different treatments on the membrane phase behaviour, glassy state, and overall protein secondary structure were studied. We found that growth on ABA resulted in the accumulation of sucrose: up to 22% of the tissue on a dry weight basis, compared to only 3.7% in non-ABA-treated tissues. Sucrose functions as a protectant during freezing and drying, but accumulation of sucrose alone is not sufficient for survival. ABA-treated tissue survives a freeze–thaw cycle down to −80 °C only after addition of an additional cryoprotectant (DMSO). Survival correlates with preservation of membrane phase behaviour. We found that ABA-treated P. patens can survive slow but not rapid drying down to water contents as low as 0.02 g H2O per g DW. Rapidly and slowly dried ABA-treated tissues were found to have similar sugar compositions and glass transition temperatures. The average strength of hydrogen bonding in the cytoplasmic glassy matrix, however, was found to be increased upon slow drying. In addition, slowly dried tissues were found to have a higher relative proportion of α-helical structures compared to rapidly dried tissues. 相似文献
19.
7,7,8,8-Tetracyanoquinodimethane (TCNQ) was incorporated in fully hydrated liposomes of the following pyrene-containing as well as non-labelled phospholipids: 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatid ylc holine (PPDPC), 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatidyl- rac'- glycerol (rac'-PPDPG), 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatidyl- sn-3'- glycerol (3'-PPDPG), 1-[10-(pyren-1-yl)decanoyl]-2-palmitoyl-sn-glycero-3-phosphatidyl- sn-3'- glycerol (3'-PDPPG), 1-[10-pyren-1-yl)decanoyl]-2-palmitoyl-sn-glycero-3-phosphatidyl-s n-1'- glycerol (1'-PDPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl-rac'-glycerol (rac'-DPPG). Lyophilized charge-transfer (CT) complexes of TCNQ with phospholipids were examined by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Due to the spectral changes observed in the vibrational bands originating from the CH2 and C = O stretching vibrations, and the bands associated with the polar headgroup of the phospholipids it is evident that TCNQ has only a minor perturbing effect on the hydrocarbon chains. However, the molecular interaction between TCNQ and phospholipids is seen in the polar headgroup region. The donated electrons are most likely located on the oxygens of the phosphate group in the polar head. As judged from the present infrared data interactions of TCNQ with phosphatidylcholines (PC) and phosphatidylglycerols (PG) differ. For PG the complex formation produces a second strong C = O stretching band at approx. 1710 cm-1 in addition to the band at approx. 1735 cm-1 indicating a specific molecular interaction in the interfacial region. 相似文献
20.
Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway. 总被引:2,自引:0,他引:2
下载免费PDF全文

Fourier transform infrared studies of active-site-methylated rhodopsin (ASMR) show that, as compared to unmodified rhodopsin, the photoreaction is almost unchanged up to the formation of lumirhodopsin. Especially, the deviations are much smaller than those observed for the corresponding intermediates of 13-desmethyl-rhodopsin. In metarhodopsin-I, larger alterations are present with respect to the three internal carboxyl groups. Similar deviations have been observed in meta-I of 13-desmethyl-rhodopsin. This indicates that, in agreement with our previous investigations, these carboxyl groups are located in close proximity to the chromophore. Because this latter pigment is capable, when bleached, of activating transducin, our data provide support for the earlier conclusion that deprotonation of the Schiff base is a prerequisite for transducin activation. The positions of the C = C and C - C stretching modes of the retinal suggest that the redshift observed in ASMR and its photoproducts can be explained by an increased distance of the Schiff base from the counterion(s). It is further shown that the photoreaction does not stop at metarhodopsin-I, but that this intermediate directly decays to a metarhodopsin-III-like species. 相似文献