首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《FEBS letters》2014,588(24):4694-4700
Ficolin-2 has been reported to bind to DNA and heparin, but the mechanism involved has not been thoroughly investigated. X-ray studies of the ficolin-2 fibrinogen-like domain in complex with several new ligands now show that sulfate and phosphate groups are prone to bind to the S3 binding site of the protein. Composed of Arg132, Asp133, Thr136 and Lys221, the S3 site was previously shown to mainly bind N-acetyl groups. Furthermore, DNA and heparin compete for binding to ficolin-2. Mutagenesis studies reveal that Arg132, and to a lesser extent Asp133, are important for this binding property. The versatility of the S3 site in binding N-acetyl, sulfate and phosphate groups is discussed through comparisons with homologous fibrinogen-like recognition proteins.  相似文献   

2.
Galectin-8 has much higher affinity for 3'-O-sulfated or 3'-O-sialylated glycoconjugates and a Lewis X-containing glycan than for oligosaccharides terminating in Galβ1→3/4GlcNAc, and this specificity is mainly attributed to the N-terminal carbohydrate recognition domain (N-domain, CRD) (Ideo, H., Seko, A., Ishizuka, I., and Yamashita, K. (2003) Glycobiology 13, 713-723). In this study, we elucidated the crystal structures of the human galectin-8-N-domain (-8N) in the absence or presence of 4 ligands. The apo molecule forms a dimer, which is different from the canonical 2-fold symmetric dimer observed for galectin-1 and -2. In a galectin-8N-lactose complex, the lactose-recognizing amino acids are highly conserved among the galectins. However, Arg(45), Gln(47), Arg(59), and the long loop region between the S3 and S4 β-strands are unique to galectin-8N. These amino acids directly or indirectly interact with the sulfate or sialic acid moieties of 3'-sialyl- and 3'-sulfolactose complexed with galectin-8N. Furthermore, in the LNF-III-galectin-8N complex, van der Waals interactions occur between the α1-3-branched fucose and galactose and between galactose and Tyr(141), and these interactions increase the affinity toward galectin-8N. Based on the findings of these x-ray crystallographic analyses, a mutagenesis study using surface plasmon resonance showed that Arg(45), Gln(47), and Arg(59) of galectin-8N are indispensable and coordinately contribute to the strong binding of galectins-8N to sialylated and sulfated oligosaccharides. Arg(59) is the most critical amino acid for binding in the S3-S4 loop region.  相似文献   

3.
The clastogenic activity of some pyrolysates of carbohydrates was examined in cultured Chinese hamster V79 cells. These pyrolysates include levoglucosan (LG-I), levoglucosenone (LG-II), furfural (FF), 5-(hydroxymethyl)-2-furfural (HMF), glyoxal (GL), methylglyoxal (MGL), 3-deoxy-D-glucosone (DG) and thiazolidine (TZ). LG-I did not induce a significant number of chromosome aberrations at doses up to 8000 micrograms/ml. In contrast, the related compound LG-II induced aberrations and reduced mitosis in a dose-dependent fashion at around 1/2000 of the LG-I doses. Both furan derivatives, FF and HMF, and both glyoxal derivatives, GL and MGL, induced a significant number of chromosome aberrations and a significant lowering of mitotic activity. Among these compounds, FF and MGL showed stronger clastogenic activity than HMF and GL, respectively. DG slightly but positively induced chromosome aberrations. TZ was one of the most potent clastogens among the compounds examined in this study, showing the highest incidence of aberrant cells with many exchanges at doses inducing a significant lowering of mitotic activity. The results of this study indicate the need for a re-evaluation of the thermal decomposition of carbohydrates as a source of genotoxic contaminants.  相似文献   

4.
We have shown previously that human sperm bind and enter leukocytes expressing surface HLA class II molecules. In the present study, mutant B lymphoblastoid cells and HLA-DR-transfected murine 3T3 fibroblasts are used to confirm that HLA class II molecules are somatic cell receptors for sperm. Further, for isolated HLA-DR expressed on murine cells, we show that sperm receptor activity requires the presence of sulfated carbohydrates. As carriers of multiple HLA-DR binding ligands, sperm may 1) mimic the target cell-activating effects of anti-DR antibody and 2) bind HIV through CD4-like or alternate receptors. By these or other mechanisms, sperm/somatic cell interactions in the female reproductive tract may affect fertility and potentiate the sexual transmission of AIDS.  相似文献   

5.
A role for sulfated polysaccharide recognition in sponge cell aggregation   总被引:2,自引:0,他引:2  
Molecules binding sulfated polysaccharides were detected as lectins in cholate lysates of cells from twelve sponge species. Each species exhibited a unique binding profile. The pattern of binding indicated that the specificity was most probably determined by the orientation of the sulfate groups on the polysaccharide chains. Cells from each of the three species examined in more detail were found to express sulfated polysaccharide-binding molecules at their surface and at least one of the polysaccharides recognized was found to inhibit the reaggregation of cells from each species. Moreover, in all but one instance, lectins for the inhibitory polysaccharide were both detected in cell lysates and shown to be expressed at the cell surface. Sulfated polysaccharides, therefore, appeared to be involved in cell interaction events in the Porifera. This conclusion was confirmed by the isolation via ion exchange chromatography of an endogenous polysaccharide from an O. tenuis cell extract. This molecule contained uronic acid and hexose units in a ratio of 2:1, 11.9% sulfur and less than 0.5% protein. It inhibited the aggregation of O. tenuis cells and the agglutination of dextran-sulfate- and polyvinyl-sulfate-coupled erythrocytes by O. tenuis cell lysates. O. tenuis cell aggregation was also inhibited by polyvinyl sulfate and dextran sulfate and molecules binding these compounds were expressed on the surface of O. tenuis cells. Thus, is was probable that the cell surface receptor for polyvinyl sulfate and dextran sulfate and isolated sponge sulfated polysaccharide are one and the same. Finally, using a dextran sulfate affinity procedure, a 35 kD dextran-sulfate-binding protein was isolated from the surface of O. tenuis cells. The possibility that the polysaccharide isolated from O. tenuis cell extracts in the absence of calcium is the monomeric form of a cell aggregation-enhancing factor is discussed.  相似文献   

6.
During the process of lymphocyte recirculation, lymphocytes bind via L-selectin to sulfated sialyl-Lewisx (sLex)–containing carbohydrate ligands expressed on the surface of high endothelial venules (HEV). We have examined the expression of sLex on HEV using a panel of mAbs specific for sLex and sLex-related structures, and have examined the function of different sLex-bearing structures using an in vitro assay of lymphocyte rolling on HEV. We report that three sLex mAbs, 2F3, 2H5, and CSLEX-1, previously noted to bind with high affinity to glycolipid-linked sLex, vary in their ability to stain HEV in different lymphoid tissues and bind differentially to O-linked versus N-linked sLex on glycoproteins. Treatment of tissue sections with neuraminidase abolished staining with all three mAbs but slightly increased staining with MECA-79, a mAb to a sulfation-dependent HEV-associated carbohydrate determinant. Treatment of tissue sections with O-sialoglycoprotease under conditions that removed the vast majority of MECA-79 staining, only partially reduced staining with the 2F3 and 2H5 mAbs. Using a novel rolling assay in which cells bind under flow to HEV of frozen tissue sections, we demonstrate that a pool of O-sialoglycoprotease–resistant molecules is present on HEV that is sufficient for attachment and rolling of lymphocytes via L-selectin. This interaction is not inhibited by the mAb MECA-79. Furthermore, MECA-79 mAb blocks binding to untreated sections by only 30%, whereas the sLex mAb 2H5 blocks binding by ~60% and a combination of MECA-79 and 2H5 mAb blocks binding by 75%. We conclude that a pool of O-glycoprotease-resistant sLex-like L-selectin ligands exist on human HEV that is distinct from the mucin-associated moieties recognized by MECA-79 mAb. We postulate that these ligands may participate in lymphocyte binding to HEV.  相似文献   

7.
The sulfated mucopolysaccharide composition of different neonate, adult and tumoral tissues is reported. It is shown that each tissue has a characteristic composition with respect to the relative amount, type and molecular size of chondroitin sulfate AC, chondroitin sulfate B and heparitin sulfate. Neonate and tumor tissues contain large amounts of chondrotin sulfate AC which is nearly absent in most adult and normal tissues respectively. Based on these and other results a possible role for the sulfated mucopolysaccharides in cell recognition and adhesiveness is proposed.  相似文献   

8.
Mechanisms for the longitudinal distribution of parasitic females of Strongyloides venezuelensis in the host intestine were investigated in mice. Adult worms were mostly recovered from the anterior-most one-third of the small intestine throughout the infection after infective larvae inoculation. Surgically implanted adult worms established well in the small intestinal mucosa, either in the duodenum or in the ileum, whereas a few worms could establish in the large intestine. Implanted worms in the small intestine remained where they were implanted until expelled. Mucosal mast cells were induced in the whole small intestine after the worm implantation. In the large intestine, a considerable number of adult worms settled in the mucosa of mutant mice, whose goblet cell mucins were undersulfated because of a mutation in sulfate-activating enzymes. In these mice, the degree of sulfation of goblet cell mucins in the large intestine was significantly reduced to the level of normal small intestine goblet cell mucins. Our results suggest that sulfated glycoconjugates, either from mucosal mast cells or goblet cells, have important effects on the longitudinal distribution of parasitic females of S. venezuelensis.  相似文献   

9.
The mannose receptor (MR) binds foreign and host ligands through interactions with their carbohydrates. Two portions of MR have distinct carbohydrate recognition properties. One is conferred by the amino-terminal cysteine-rich domain (Cys-MR), which plays a critical role in binding sulfated glycoproteins including pituitary hormones. The other is achieved by tandemly arranged C-type lectin domains that facilitate carbohydrate-dependent uptake of infectious microorganisms. This dual carbohydrate binding specificity enables MR to bind ligands by interacting with both sulfated and non-sulfated polysaccharide chains. We previously determined crystal structures of Cys-MR complexed with 4-SO(4)-N-acetylglucosamine and with an unidentified ligand resembling Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]). In continued efforts to elucidate the mechanism of sulfated carbohydrate recognition by Cys-MR, we characterized the binding affinities between Cys-MR and potential carbohydrate ligands using a fluorescence-based assay. We find that Cys-MR binds sulfated carbohydrates with relatively high affinities (K(D)=0.1 mM to 1.0 mM) compared to the affinities of other lectins. Cys-MR also binds Hepes with a K(D) value of 3.9 mM, consistent with the suggestion that the ligand in the original Cys-MR crystal structure is Hepes. We also determined crystal structures of Cys-MR complexed with 3-SO(4)-Lewis(x), 3-SO(4)-Lewis(a), and 6-SO(4)-N-acetylglucosamine at 1.9 A, 2.2 A, and 2.5 A resolution, respectively, and the 2.0 A structure of Cys-MR that had been treated to remove Hepes. The conformation of the Cys-MR binding site is virtually identical in all Cys-MR crystal structures, suggesting that Cys-MR does not undergo conformational changes upon ligand binding. The structures are used to rationalize the binding affinities derived from the biochemical studies and to elucidate the molecular mechanism of sulfated carbohydrate recognition by Cys-MR.  相似文献   

10.
11.
Previous studies have shown that the mucin-type polypeptidesGlyCAM-1, CD34, and MAdCAM-1 can function as ligands for L-selectinonly when they are synthesized by the specialized high-endothelialvenules (HEV) of lymph nodes. Since sialylation, sulfation,and possibly fucosylation are required for generating recognition,we reasoned that other mucins known to have such componentsmight also bind L-selectin. We show here that soluble mucinssecreted by human colon carcinoma cells, as well as those derivedfrom human bronchial mucus can bind to human L-selectin in acalcium-dependent manner. As with GlyCAM-1 synthesized by lymphnode HEY, 2–3 linked sialic acids and sulfation seem toplay a critical role in generating this L-selectin binding.In each case, only a subset of the mucin molecules is recognizedby L-selectin. Binding is not destroyed by boiling, suggestingthat recognition may be based primarily upon carbohydrate structures.Despite this, O-linked oligosaccharide chains released fromthese ligands by beta-elimination do not show any detectablebinding to L-selectin. Following protease treatment of the ligands,binding persists in a subset of the resulting fragments, indicatingthat specific recognition is determined by certain regions ofthe original mucins. How ever, O-linked oligosaccharides releasedfrom the subset of non-binding mucin fragments do not show verydifferent size and charge profiles compared to those that dobind. Furthermore, studies with polylactosamine-degrading endoglycosidasessuggest that the core structures involved in generating bindingcan vary among the different ligands. Taken together, thesedata indicate that a single unique oligosaccharide structuremay not be responsible for high-affinity binding. Rather, diversemucins with sialylated, sulfated, fucosylated lactosamine-typeO-linked oligosaccharides can generate high-affinity L-selectinligands, but only when they present these chains in unique spacingand/or clustered combinations, presumably dictated by the polypeptidebackbone. L-selectin mucins sialic sialic acid sulfate adhesion  相似文献   

12.
Gutman J  Zarka A  Boussiba S 《Fungal biology》2011,115(8):803-811
The unicellular green alga Haematococcus pluvialis (Chlorophyta, Volvocales) is currently the best commercial source of the natural red ketocarotenoid astaxanthin. Paraphysoderma sedebokerensis (Blastocladiomycota), a parasitic blastoclad that is specific for this microalga, was recently isolated and identified in our laboratory. In this study, we investigated the recognition process between the parasite and H. pluvialis. Obligatory requirements for recognition were identified as an ion concentration in the medium of 20?mM, the presence of calcium ions, and neutral to basic conditions; these requirements imply that a protein is involved in the process. In a search for potential lectin-sugar interactions as a major event in the recognition process, we screened for exposed glycosidic moieties on the cell wall of the alga and on the parasite zoospore surface. Competition experiments with the appropriate lectins and monosugars identified Ricinus communis agglutinin (RCA(120)) as the lectin that recognizes Gal-N-acetyl-d-glucosamine, an oligosaccharide located on the host. We propose that an RCA(120)-like lectin-sugar interaction mediates the highly specific interaction between the blastocladian parasite and its algal host.  相似文献   

13.
Rituximab is a widely used monoclonal antibody drug for treating certain lymphomas and autoimmune diseases. To understand the molecular mechanism of recognition of human CD20 by Rituximab, we determined the crystal structure of the Rituximab Fab in complex with a synthesized peptide comprising the CD20 epitope (residues 163-187) at 2.6-A resolution. The combining site of the Fab consists of four complementarity determining regions that form a large, deep pocket to accommodate the epitope peptide. The bound peptide assumes a unique cyclic conformation that is constrained by a disulfide bond and a rigid proline residue (Pro(172)). The (170)ANPS(173) motif of CD20 is deeply embedded into the pocket on the antibody surface and plays an essential role in the recognition and binding of Rituximab. The antigen-antibody interactions involve both hydrogen bonds and van der Waals contacts and display a high degree of structural and chemical complementarity. These results provide a molecular basis for the specific recognition of CD20 by Rituximab as well as valuable information for development of improved antibody drugs with better specificity and higher affinity.  相似文献   

14.
As part of a program to investigate the origins of peptide-carbohydrate mimicry, the conformational preferences of peptides that mimic the group B streptococcal type III capsular polysaccharide have been investigated by NMR spectroscopy. Detailed studies of a dodecapeptide, FDTGAFDPDWPA, a molecular mimic of the polysaccharide antigen, and two new analogs, indicated a propensity for beta-turn formation. Different beta-turn types were found to be present in the trans and cis (Trp-10-Pro-11) isomers of the peptide: the trans isomer favored a type I beta-turn from residues Asp-7-Trp-10, whereas the cis isomer exhibited a type VI beta-turn from residues Asp-9-Ala-12. The interaction of the dodecapeptide FDTGAFDPDWPA with a protective anti-group B Streptococcus monoclonal antibody has also been investigated, by transferred nuclear Overhauser effect NMR spectroscopy and saturation-transfer difference NMR spectroscopy (STD-NMR). The peptide was found to adopt a type I beta-turn conformation on binding to the antibody; the peptide residues (Asp-7-Trp-10) forming this turn are recognized by the antibody, as demonstrated by STD-NMR experiments. STD-NMR studies of the interactions of oligosaccharide fragments of the capsular polysaccharide have also been performed and provide evidence for the existence of a conformational epitope.  相似文献   

15.
CCN1, also named Cyr61 (cysteine‐rich protein 61), is the first identified member of the CCN family that is composed of 6 secreted extracellular matrix‐associated glycoproteins. CCN1 has been demonstrated to participate in pathogenesis of rheumatoid arthritis through various pathways. A monoclonal antibody, namely, 093G9, is effective to antagonize the effects of CCN1 and hence has potential therapeutic benefits against rheumatoid arthritis. Here, we show that the epitope recognized by 093G9 is mapped to residues 77 to 80 of CCN1, and a cyclic peptide encompassing residues 75 to 81 of CCN1 displays high binding affinity for 093G9. The crystal structure of the 093G9 Fab in complex with the cyclic peptide was determined at 2.7 Å resolution, which reveals the intensive interactions between CCN1 and 093G9. Particularly, residues Asn79 and Phe80 of CCN1 are inserted into cavities mainly formed by residues of complementarity‐determining region loop L3 and framework region L2 and by residues of complementarity‐determining region loops H2 and H3, respectively, which contribute most of the interactions and therefore are critical for the recognition by 093G9. Together, these findings not only identify the epitope of CCN1 for 093G9 but also reveal the molecular mechanism of recognition and binding of CCN1 by 093G9.  相似文献   

16.
MHC interaction and T cell recognition of carbohydrates and glycopeptides.   总被引:14,自引:0,他引:14  
The T cell independence of complex polysaccharide Ag has suggested the possibility that carbohydrates may be incapable of T cell recognition because of a failure to interact with MHC restriction elements and/or a failure of MHC/carbohydrate complexes to interact with and be recognized by Ag-specific TCR. We have used two approaches to obtain information about T cell recognition of carbohydrate. First, we have determined the capacity of a series of oligosaccharides and glycolipids to bind a murine class II MHC molecule, IAd. No significant binding was observed with the 26 compounds tested, but the limitation to these studies was that there was a relatively limited collection of synthetic carbohydrate and glycolipid structures of limited complexity available for analysis. The second approach involved the study of the effect of glycosylation of a known peptide T cell epitope (OVA 323-339) on MHC binding of the peptide and on T cell recognition. Three patterns of effects were observed: 1) no effect on either binding or T cell recognition. This pattern was observed when the carbohydrate was located at residues removed from the core MHC-binding region. When the carbohydrate was located within the core MHC-binding regions, either 2) glycosylation destroyed both MHC binding and T cell recognition; or 3) glycosylation did not ablate MHC binding or T cell recognition. In this latter instance, there was evidence to indicate that the carbohydrate moiety was an important part of the antigenic determinant recognized by T cells.  相似文献   

17.
The topography of the antigen-binding site as well as the number and the positioning of the antigen contact residues are strongly correlated with the size of the antigen with which the antibody interacts. On the basis of these considerations, we have designed a focused scFv repertoire biased for haptens, designated the cavity library. The hapten-specific scFv, FITC8, was used as a scaffold for library construction. FITC8, like other hapten binders, displays a characteristic cavity in its paratope into which the hapten binds. In five of the six complementarity-determining regions, diversity-carrying residues were selected rationally on the basis of a model structure of FITC8 and on known antibody structure-function relationships, resulting in variation of 11 centrally located, cavity-lining residues. L3 was allowed to carry a more complex type of diversity. In addition, length variation was introduced into H2, as longer versions of this loop have been shown to correlate with increased hapten binding. The library was screened, using phage display, against a panel of five different haptens, yielding diverse and highly specific binders to four of the antigens. Parallel selections were performed with a library having diversity spread onto a greater area, including more peripherally located residues. This resulted in the isolation of binders, which, in contrast to the clones selected from the cavity library, were not able to bind to the soluble hapten in the absence of the carrier protein. Thus, we have shown that by focusing diversity to the hotspots of interaction a library with improved hapten-binding ability can be created. The study supports the notion that it is possible to create antibody libraries that are biased for the recognition of antigens of pre-defined size.  相似文献   

18.
In this report, an artificial antigen (PFLX–BSA: Pefloxacin connected bovine serum albumin) was successfully prepared. The monoclonal antibody against pefloxacin was produced and characterized using a direct competitive ELISA. The linear range of detection was 0.115–6.564 µg/L. The limit of detection defined as IC15 was 0.170 ± 0.05 µg/L and the IC50 was 0.902 ± 0.03 µg/L. The antibody variable region genes were amplified, assembled, and sequenced. A three–dimensional structural model of the variable region was constructed to study the mechanism of antibody recognition using molecular docking analysis. Three predicted essential amino acids, Thr53, Arg97 of heavy chain and Thr52 of light chain, were mutated to verify the theoretical model. Three mutants lost binding activity signi?cantly against pefloxacin as predicted. These may provide useful insights for studying antigen–antibody interaction mechanisms to improve antibody affinity maturation in vitro.  相似文献   

19.
A monoclonal antibody (TDM-2) specific to a UV-induced cyclobutane pyrimidine dimer (T[cis-syn]T) has previously been established; however,the immunization had used UV-irradiated calf-thymus DNA containing a heterogeneous mixture of photoproduct sites. We investigated here the structural requirements of antigen recognition by the antibody using chemically synthesized antigen analogs. TDM-2 bound with cis-syn,but not trans-syn thymine dimer,and could bind strongly with four nucleotide analogs in which the cis-syn pyrimidine dimer was located in the center. Antigen analogs containing abasic linkers at the 5'- or 3'-side of the cis-syn cyclobutane pyrimidine dimer were synthesized and tested for binding to TDM-2. The results indicated that TDM-2 recognizes not only the cyclobutane ring but also both the 5'- and 3'-side nucleosides of the cyclobutane dimer. Furthermore,it was proved that either the 5'- or 3'-side phosphate group at a cyclobutane dimer site was absolutely required for the affinity to TDM-2. The antibody showed a strong binding to single stranded DNA but indicated little binding to double stranded DNA.  相似文献   

20.
Site-specific attachment of metal chelators or cytotoxic agents to the carbohydrate region of monoclonal antibodies results in clinically useful immunoconjugates [Doerr et al. (1991) Ann Surg 214: 118, Wynant et al. (1991) Prostate 18: 229]. Since the capacity of monoclonal antibodies (mAb) to mediate tumor cell lysis via antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) may accentuate the therapeutic effectiveness of immunoconjugates, we determined whether site-specific modification of mAb carbohydrates interfered with these functions. The chemical modifications examined consisted of periodate oxidation and subsequent conjugation to either a peptide linker/chelator (GYK-DTPA) or a cytotoxic drug (doxorubicin adipic dihydrazide). mAb-associated carbohydrates were also modified metabolically by incubating hybridoma cells in the presence of a glucosidase inhibitor deoxymannojirimycin to produce high-mannose antibody. All four forms (unaltered, oxidized, conjugated and high-mannose) of murine mAb OVB-3 mediated tumor cell lysis via CDC. Similarly, equivalent ADCC was observed with native and conjugated forms of mAb OVB-3 and EGFR.1. ADCC was achieved with different murine effector cells such as naive (NS), poly (I*C)- and lipopolysaccharide-stimulated (SS) spleen cells, orCorynebacterium-parvum-elicited peritoneal cells (PEC). All murine effector cell types mediated tumor cell lysis but differed in potency such that PEC>SS>NS. Excellent ADCC activity was also demonstrable by human peripheral blood mononuclear cells with OVB-3-GYK-DTPA and high-mannose OVB-3 mAb. ADCC activity was detectable in vivo: both native and conjugated OVB-3 inhibited growth of OVCAR-3 xenografts in nude mice primed withC. parvum. In conclusion, modification of mAb carbohydrates did not compromise their in vivo or in vitro biological functions. Therefore, combination therapy using immunomodulators to enhance the effector functions of site-specific immunoconjugates could be seriously contemplated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号