首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A family of vertebrate cdc2-related kinases has been identified, and these kinases are candidates for roles in cell cycle regulation. Here, we show that the human PLSTIRE gene product is a novel cyclin-dependent kinase, cdk6. The cdk6 kinase is associated with cyclins D1, D2, and D3 in lysates of human cells and is activated by coexpression with D-type cyclins in Sf9 insect cells. Furthermore, we demonstrate that endogenous cdk6 from human cell extracts is an active kinase which can phosphorylate pRB, the product of the retinoblastoma tumor suppressor gene. The activation of cdk6 kinase occurs during mid-G1 in phytohemagglutinin-stimulated T cells, well prior to the activation of cdk2 kinase. This timing suggests that cdk6, and by analogy its homolog cdk4, links growth factor stimulation with the onset of cell cycle progression.  相似文献   

2.
Threonine 161 phosphorylation of p34cdc2 and its equivalent threonine 160 in p33cdk2 by cdk-activating kinase (CAK) is essential for the activation of these cyclin-dependent kinases. We have studied the expression and associated kinase activity of p40MO15, the catalytic subunit of CAK, during Xenopus oogenesis, meiotic maturation, and early development to understand in more detail how cdk kinases are regulated during these events. We find that p40MO15 is a stable protein with a half-life > 16 h that is accumulated during oogenesis. p40MO15 protein and its associated CAK activity are localized predominantly to the germinal vesicle; however, a small but significant proportion is found in the cytoplasm. The amount of p40MO15 detected in stage VI oocytes remains unchanged through meiotic maturation, fertilization, and early embryogenesis. Significantly, p40MO15 was found to be constitutively active during oogenesis, meiotic maturation, and the rapid mitotic cycles of early development. This suggests that regulation of p34cdc2 and p33cdk2 activity during cell cycle progression does not involve changes in the level or activity of p40MO15/CAK.  相似文献   

3.
Increasing evidence suggests that the eukaryotic cell cycle is controlled at several checkpoints by different members of a novel class of protein kinase, the cyclin-dependent kinases. To phosphorylate their substrates, these enzymes bind to proteins of the cyclin family--proteins that are synthesized and degraded at specific points in each cell cycle. The most well known of these kinases is the 34 kDa product of the cdc2 gene in fission yeast, p34cdc2; however, several putative cyclin-dependent kinases have now been cloned or identified. Some of these closely resemble p34cdc2. Here we review these new proteins, their potential roles in the cell cycle and the cyclins with which they may interact.  相似文献   

4.
P R Clarke  D Leiss  M Pagano    E Karsenti 《The EMBO journal》1992,11(5):1751-1761
Cyclins are proteins which are synthesized and degraded in a cell cycle-dependent fashion and form integral regulatory subunits of protein kinase complexes involved in the regulation of the cell cycle. The best known catalytic subunit of a cyclin-dependent protein kinase complex is p34cdc2. In the cell, cyclins A and B are synthesized at different stages of the cell cycle and induce protein kinase activation with different kinetics. The kinetics of activation can be reproduced and studied in extracts of Xenopus eggs to which bacterially produced cyclins are added. In this paper we report that in egg extracts, both cyclin A and cyclin B associate with and activate the same catalytic subunit, p34cdc2. In addition, cyclin A binds a less abundant p33 protein kinase related to p34cdc2, the product of the cdk2/Eg1 gene. When complexed to cyclin B, p34cdc2 is subject to transient inhibition by tyrosine phosphorylation, producing a lag between the addition of cyclin and kinase activation. In contrast, p34cdc2 is only weakly tyrosine phosphorylated when bound to cyclin A and activates rapidly. This finding shows that a given kinase catalytic subunit can be regulated in a different manner depending on the nature of the regulatory subunit to which it binds. Tyrosine phosphorylation of p34cdc2 when complexed to cyclin B provides an inhibitory check on the activation of the M phase inducing protein kinase, allowing the coupling of processes such as DNA replication to the onset of metaphase. Our results suggest that, at least in the early Xenopus embryo, cyclin A-dependent protein kinases may not be subject to this checkpoint and are regulated primarily at the level of cyclin translation.  相似文献   

5.
6.
W. Nagl 《Protoplasma》1995,188(3-4):143-150
Summary Almost all organisms, from protists to humans, and from algae to orchids, display somatic polyploidy, including polyteny. In insects and higher plants, nearly all normal, differentiated cells are polyploid, corresponding to the majority of living matter. So far, no universal mechanism controlling the switch from proliferation to polyploidization has been proposed. However, recent progress in understanding regulation of the mitotic cell cycle by protein kinases and cyclins allows some unifying ideas which can be experimentally tested to be put forward. The key events are the abolishment of the dependence of DNA replication on mitosis, and changes in the expression and activity of the complexes formed by cyclin-dependent kinases and cyclins. In addition, repression of further cell cycle control genes may allow underreplication of DNA, characteristic of endo-cycles in many insects and angiosperms. Change to a different checkpoint may be responsible for gene amplification. The switch in cell cycle control is developmentally regulated by signal transduction cascades, which are briefly discussed. Polyploidy is also known from many cancers, where genetic and metabolic disturbances lead to a similar switch to that in normal cells. The related literature is reviewed and some possible lines of future research are suggested.Abbreviations CAK p34cdc2-activating kinase - cdc2 cell division cycle gene inSchizosaccharomyces pombe (fission yeast), named cdk1 in mammals - CDKs cyclin-dependent kinases - cdk2 S-phase specific CDK gene in higher organisms - MAP kinase mitogen-activated protein kinase - MAPs microtubule-associated proteins - MPF maturation (or mitosis) promoting factor - p34cdc2 mitosis specific protein kinase  相似文献   

7.
Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.  相似文献   

8.
Cyclin-dependent kinase (cdks) are key components of the engine that drives the cell proliferation cycle in all eukaryotes. These kinases are related to p34(cdc2) and associate with regulatory subunits belonging to the cyclin family. To understand how cdks promote cell cycle progression, it will be important to identify their physiological substrates and to determine how phosphorylation influences the functions of these substrates. This article discusses recent progress as well as some of the problems related to the quest for cdk substrates.  相似文献   

9.
Characterization of synthetic peptide substrates for p34cdc2 protein kinase   总被引:8,自引:0,他引:8  
Synthetic peptide substrates for the cell division cycle regulated protein kinase, p34cdc2, have been developed and characterized. These peptides are based on the sequences of two known substrates of the enzyme, Simian Virus 40 Large T antigen and the human cellular recessive oncogene product, p53. The peptide sequences are H-A-D-A-Q-H-A-T-P-P-K-K-K-R-K-V-E-D-P-K-D-F-OH (T antigen) and H-K-R-A-L-P-N-N-T-S-S-S-P-Q-P-K-K-K-P-L-D-G-E-Y-NH2 (p53), and they have been employed in a rapid assay of phosphorylation in vitro. Both peptides show linear kinetics and an apparent Km of 74 and 120 microM, respectively, for the purified human enzyme. The T antigen peptide is specifically phosphorylated by p34cdc2 and not by seven other protein serine/threonine kinases, chosen because they represent major classes of such enzymes. The peptides have been used in whole cell lysates to detect protein kinase activity, and the cell cycle variation of this activity is comparable to that measured with specific immune and affinity complexes of p34cdc2. In addition, the peptide phosphorylation detected in mitotic cells is depleted by affinity adsorption of p34cdc2 using either antibodies to p34cdc2 or by immobilized p13, a p34cdc2-binding protein. Purification of peptide kinase activity from mitotic HeLa cells yields an enzyme indistinguishable from p34cdc2. These peptides should be useful in the investigation of p34cdc2 protein kinase and their regulation throughout the cell division cycle.  相似文献   

10.
Although Cks proteins were the first identified binding partners of cyclin-dependent protein kinases (cdks), their cell cycle functions have remained unclear. To help elucidate the function of Cks proteins, we examined whether their binding to p34cdc2 (the mitotic cdk) varies during the cell cycle in Xenopus egg extracts. We observed that binding of human CksHs2 to p34cdc2 was stimulated by cyclin B. This stimulation was dependent on the activating phosphorylation of p34cdc2 on Thr-161, which follows cyclin binding and is mediated by the cdk-activating kinase. Neither the inhibitory phosphorylations of p34cdc2 nor the catalytic activity of p34cdc2 was required for this stimulation. Stimulated binding of CksHs2 to another cdk, p33cdk2, required both cyclin A and activating phosphorylation. Our findings support recent models that suggest that Cks proteins target active forms of p34cdc2 to substrates.  相似文献   

11.
Members of the mitogen-activated protein (MAP) kinase family are implicated in mediating entry of cells into the cell cycle, as well as passage through meiotic M phase. These kinases have attracted much interest because their activation involves phosphorylation on both tyrosine and threonine residues, but little is known about their physiological targets. In this study, two distinct members of the MAP kinase family (p44mpk and p42mapk) are shown to phosphorylate chicken lamin B2 at a single site identified as Ser16. Moreover, these MAP kinases cause depolymerization of in-vitro-assembled longitudinal lamin head-to-tail polymers. Ser16 was previously shown to be phosphorylated during mitosis in vivo, and to be a target of the mitotic protein kinase p34cdc2 in vitro. Accordingly, lamins were proposed to be direct in vivo substrates of p34cdc2. This proposal is supported by quantitative analyses indicating that lamin B2, when assayed in vitro, is a substantially better substrate for p34cdc2 than for MAP kinases. Nevertheless, a physiological role of MAP kinases in lamin phosphorylation is not excluded. The observation that members of the MAP kinase family display sequence specificities overlapping that of p34cdc2 raises the possibility that some of the purported substrates of p34cdc2 may actually be physiological substrates of MAP kinases.  相似文献   

12.
The carboxyl-terminal regions of neurofilament high (NF-H) and middle (NF-M) molecular weight proteins have been suggested to be phosphorylated in vivo by a p34cdc2-like protein kinase, on the basis of the in vivo phosphorylation site motif and in vitro phosphorylation of the proteins by p34cdc2 kinase (Hisanaga, S.I., Kusubata, M., Okumura, E. and Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803). A novel proline-directed protein kinase previously identified and purified from bovine brain has been found in this study to phosphorylate NF-H and NF-M at sites identical to those phosphorylated by HeLa cell p34cdc2 kinase. The proline-directed kinase is composed of a 33-kDa and a 25-kDa subunit. The 33-kDa kinase subunit was partially sequenced, and degenerate oligonucleotide primers corresponding to the amino acid sequence information were used to clone the subunit by polymerase chain reaction (PCR). Two overlapping PCR products comprised a complete open reading frame of 292 amino acids. The sequence contains all features of a protein kinase, suggesting that the 33-kDa peptide represents the catalytic subunit of the kinase. The 33-kDa subunit shows high and approximately equal homology to human p34cdc2 and human cdk2, with about 58 and 59% amino acid identity, respectively. These results suggest that the brain kinase represents a new category of the cdc2 family, and that some members of the cdc2 kinase family may have major functions unrelated to cell cycle control.  相似文献   

13.
The bovine papillomavirus E2 protein can inhibit the proliferation of HT-3 cells, a p53-negative cervical carcinoma cell line containing integrated human papillomavirus type 30 DNA. Here, we analyzed HT-3 cells to explore the mechanism of p53-independent E2-mediated growth inhibition. Expression of the E2 protein repressed expression of the endogenous human papillomavirus type 30 E6/E7 genes. This was accompanied by hypophosphorylation and increased accumulation of p105Rb and repression of E2F1 expression. The E2 protein also caused reduced cyclin-dependent kinase (cdk) 2 activity, but this did not appear to be due to increased expression of cdk inhibitors. Rather, expression of cyclin A, which regulates cdk2 activity, and the cdc25A and cdc25B phosphatases, which are thought to activate cdk2, was significantly reduced at both the RNA and protein levels in response to E2 expression. The E2 protein reduced expression of cdc25A and cdc25B in both HT-3 and HeLa cells, but not in cells that were not growth-inhibited by the E2 protein. E2 point mutants unable to inhibit cell growth did not repress cdc25A and cdc25B expression, nor did the cell cycle inhibitors hydroxyurea and mimosine. Based on these results and the known properties of cell cycle components, we propose a model to account for E2-induced growth inhibition of cervical carcinoma cell lines.  相似文献   

14.
L Brown  J C Hines    D S Ray 《Nucleic acids research》1992,20(20):5451-5456
A gene (CRK) encoding a cdc2-related protein has been identified in the trypanosomatid Crithidia fasciculata. CRK has a high degree of sequence identity with the human cdc2 gene and contains the sixteen amino acid PSTAIR motif, characteristic of p34cdc2 protein-serine/threonine kinases, with four amino acid substitutions in the motif. In addition, two inserts of more than sixty amino acids have been found between conserved domains of this putative protein-serine/threonine kinase. CRK is a single copy gene and is expressed on a 3.8 kb mRNA. Anti-CRK antibodies detect a 53kDa protein in extracts of C.fasciculata in agreement with the size predicted from the nucleotide sequence of the cloned gene. These antibodies also recognize proteins of 48 and 60 kDa in extracts of the trypanosomatid Leishmania tarentolae. Antibodies against the human PSTAIR peptide detect the p34cdc2 protein in human nuclear extracts but fail to detect a 34 kDa protein in C.fasciculata extracts. These results suggest that novel higher molecular weight forms of the cdc2 protein family may be involved in cell cycle control in trypanosomes.  相似文献   

15.
The Xenopus cdk2 gene encodes a 32-kDa protein kinase with sequence similarity to the 34-kDa product of the cdc2 gene. Previous studies have shown that the kinase activity of the protein product of the cdk2 gene oscillates in the Xenopus embryonic cell cycle with a high in M-phase and a low in interphase. In the present study cdk2 was found not to be associated with any newly synthesized proteins during the cell cycle, but the enzyme did undergo periodic changes in phosphorylation. Upon exit from metaphase, cdk2 became increasingly phosphorylated on both tyrosine and serine residues, and labeling on these residues increased progressively until entry into mitosis, when tyrosine residues were markedly dephosphorylated. Phosphopeptide mapping of cdk2 demonstrated the major sites of phosphorylation were in a phosphopeptide with a pI of 3.7 that contained both phosphoserine and phosphotyrosine. This phosphopeptide accumulated in egg extracts blocked in S-phase with aphidicolin and was not evident in cdc2 immunoprecipitated under the same conditions. Under the same conditions cdc2 was phosphorylated primarily on a phosphopeptide containing both phosphothreonine and phosphotyrosine residues, most likely threonine 14 and tyrosine 15. Affinity-purified human GST-cdc25 was able to dephosphorylate and activate cdk2 isolated from interphase cells. Phosphopeptide mapping demonstrated that the phosphate was specifically removed from the same phosphopeptide identified as the major in vivo site of phosphorylation. These results demonstrate that cdk2 is regulated in the cell cycle by phosphorylation and dephosphorylation on both serine and tyrosine residues. Moreover, the increased phosphorylation of cdk2 in aphidicolin-blocked extracts and the ability of cdc25 to mediate cdk2 dephosphorylation in vitro suggest the possibility that cdk2 is part of the mechanism ensuring mitosis is not initiated until completion of DNA replication. It also implies cdc25 may have other functions in addition to the regulation of cdc2 kinase activity.  相似文献   

16.
17.
Regulation of cell cycle progression occurs in part through the targeted degradation of both activating and inhibitory subunits of the cyclin-dependent kinases. During G1, CDC4, encoding a WD-40 repeat protein, and CDC34, encoding a ubiquitin-conjugating enzyme, are involved in the destruction of these regulators. Here we describe evidence indicating that CDC53 also is involved in this process. Mutations in CDC53 cause a phenotype indistinguishable from those of cdc4 and cdc34 mutations, numerous genetic interactions are seen between these genes, and the encoded proteins are found physically associated in vivo. Cdc53p defines a large family of proteins found in yeasts, nematodes, and humans whose molecular functions are uncharacterized. These results suggest a role for this family of proteins in regulating cell cycle proliferation through protein degradation.  相似文献   

18.
Recent evidence suggested a role for the cell cycle dependent kinases cdc2 and cdk2 in apoptosis. An important mechanism by which many cell types could undergo apoptosis is through the activation of the Fas molecule on the cell membrane. To investigate whether Fas-induced cell death activated cdc2 and cdk2 kinases inappropriately, the human T lymphoma cells HUT-78, which express a high copy number of Fas, and two other previously characterized subclones of the same cell line which express mutant, cell death-deficient dominant-negative forms of Fas, were Fas-challenged and the changes in cdc2 and cdk2 kinase activity monitored. In both wild-type and Fas-mutated HUT-78 cells, apoptosis was associated simultaneously with decreased cdc2 and increased cdk2 activity. This association suggested that changes in cdc2 and cdk2 kinase activity are secondary events in cell death mediated by Fas. J. Cell. Biochem. 64:579–585. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The activity of cyclin-dependent kinases (cdks) depends on the phosphorylation of a residue corresponding to threonine 161 in human p34cdc2. One enzyme responsible for phosphorylating this critical residue has recently been purified from Xenopus and starfish. It was termed CAK (for cdk-activating kinase), and it was shown to contain p40MO15 as its catalytic subunit. In view of the cardinal role of cdks in cell cycle control, it is important to learn if and how CAK activity is regulated during the somatic cell cycle. Here, we report a molecular characterization of a human p40MO15 homologue and its associated CAK activity. We have cloned and sequenced a cDNA coding for human p40MO15, and raised specific polyclonal and monoclonal antibodies against the corresponding protein expressed in Escherichia coli. These tools were then used to demonstrate that p40MO15 protein expression and CAK activity are constant throughout the somatic cell cycle. Gel filtration suggests that active CAK is a multiprotein complex, and immunoprecipitation experiments identify two polypeptides of 34 and 32 kD as likely complex partners of p40MO15. The association of the three proteins is near stoichiometric and invariant throughout the cell cycle. Immunocytochemistry and biochemical enucleation experiments both demonstrate that p40MO15 is nuclear at all stages of the cell cycle (except for mitosis, when the protein redistributes throughout the cell), although the p34cdc2/cyclin B complex, one of the major purported substrates of CAK, occurs in the cytoplasm until shortly before mitosis. The absence of obvious changes in CAK activity in exponentially growing cells constitutes a surprise. It suggests that the phosphorylation state of threonine 161 in p34cdc2 (and the corresponding residue in other cdks) may be regulated primarily by the availability of the cdk/cyclin substrates, and by phosphatase(s).  相似文献   

20.
In yeast, the protein kinase p34cdc2 plays a role in regulating both the G2 to M and G1 to S phase transitions. The discovery of multiple homologues of the protein in cells of higher eukaryotic organisms suggests that different cell cycle regulatory events may be performed by different kinases in such cells. Here, the synthesis and metabolism of the human forms of these proteins are described in a normal human cell type, peripheral blood T lymphocytes that have been stimulated to enter the cell cycle in vitro. Using a carboxyl-terminus antiserum specific for true p34cdc2, the protein could first be found in T cells at about 24 to 30 h after stimulation, just before the initiation of DNA synthesis. Three forms of the enzyme could be resolved by denaturing gel electrophoresis: an unphosphorylated form with an apparent molecular mass of 34,500 daltons and two phosphorylated derivatives. In cells synchronized at G2/M phase with nocodazole, p34 was almost entirely in the unphosphorylated form whereas the phosphorylated derivatives were more predominant in cultures arrested at the G1/S border with aphidicolin. The relationship of p34 synthesis to the phosphorylation of p110Rb, an event known to be associated with passage through late G1 and/or the G1/S phase transition, was also investigated. It was noted that p110Rb phosphorylation began before p34 synthesis first became detectable. Furthermore, it appeared that the two events could be largely uncoupled by treating cells with deferoxamine (10 microM), an iron chelating agent that arrests T cells at a point in late G1 phase but substantially before the G1 to S phase transition. Under these conditions, p110Rb phosphorylation was almost completely accomplished in the absence of significant p34 synthesis, a finding that suggests that most or all of p110 phosphorylation is performed by kinases other than p34. Because of this observation, extracts were next examined for p34-like molecules using an antibody against the so-called PSTAIRE domain found in all cdc2 homologues identified to date. A species of protein with a mobility slightly less than true p34 was found, even in resting T cells. Upon stimulation, this protein increased slightly in amount, and a second protein with a mobility greater than p34, a putative p33cdk2, was seen. Not only was the appearance of these proteins not inhibited by deferoxamine but they accumulated in cultures treated with the drug, suggesting that p33, and not p34, may be the G1 phase kinase for p110Rb.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号