首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increasing amount of evidence indicates that the disialoganglioside GD3 is involved in apoptosis in many cell lines. Our previous studies demonstrated that endogenous GD3 expression induced apoptosis in U-1242 MG glioma cells transfected with the GD3 synthase gene (U1242MG-GD3 cells). In this paper, we present further investigations on the molecular mechanisms of GD3-induced apoptosis in this cell line. We found that endogenously synthesized GD3 localizes to the caveolae of this cell line, where it promotes the localization of death receptor 5 (DR5), tumor necrosis factor receptor-1 (TNF-R1), and Fas (Apo-1) to the caveolae. In addition, caspase-8 was translocated to the caveolar fraction and cleaved; the cleaved proteins were then re-located into the high density fractions. However, GD3 had no effect on the distribution of the adapter protein Fas-associated death domain (FADD). We conclude that GD3 functions as a regulatory molecule early in the extrinsic apoptosis pathway.O. M. Omran, H. E. Saqr––Both authors contributed equally to this work.  相似文献   

2.
Ganglioside-induced apoptosis in mouse thymocytes was shown to be caspase-dependent, mitochondria being involved in the apoptosis-signaling pathway of GM1-, GD3-and GT1b-stimulated cells. According to their role in caspase-8-induced signaling cascades in thymocytes, these gangliosides can be divided into two groups, viz., those activating cell apoptosis by a mitochondrial route without the involvement of death receptors and caspase-8 (the so-called mitochondrial signaling cascade) (GD3), and those activating this process by receptor-mediated and mitochondrial routes (GM1 and GT1b). Anti-Fas antibodies that activate apoptosis of thymocytes by receptor pathway were used as a reference system. Cytofluorimetric studies of chromosomal DNA fragmentation revealed that effector caspase-3 is involved in apoptotic signaling cascades triggered by all the gangliosides under study. At the same time, the caspase-3 inhibitor Z-DEVD-FMK abolished the ganglioside-and antibody-induced depolarization of thymocyte mitochondrial membranes by a receptor-dependent route either partly (GM1 and GT1b) or completely (anti-Fas antibodies). Thymocytes stimulated by GD3 by a mitochondrial apoptotic route were an exception. Possible mechanisms of the caspase-3 involvement in the regulation of the activity of mitochondrial apoptosis-induced channels (MAC) are discussed and in particular, the role of proapoptotic proteins Bax/Bid.  相似文献   

3.
4.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

5.
Ganglioside-induced apoptosis in the cells of IL-2–dependent cytotoxic murine cell line CTLL-2 was shown to be caspase dependent: GM1-, GM2-, and GD3-induced suppression of cell proliferation was cancelled by a general caspase inhibitor Z-VAD-FMK. Ganglioside-induced apoptosis pathways are different for different individual glycolipids; the differences exist both at the initiation and effector stages of the caspase cascade. Only for GM1-induced process, molecular mechanisms of signal transduction coincide with the ones for CD95 and TNF: the participation of both the main initiation caspases 8, 1, and 4, and caspases 3 and 9 as well, has been shown. Caspase 3 participates in the pathway induced by GM3, GD1a, GD1b, and GT1b, but not by GM2. As morphological features show, tumor-associated ganglioside GM2 is also a stimulus of programmed cell death (PCD) for CTLL-2 cell line: addition of GM2 into cell culture has resulted in appearance of annexin V-positive cells and in accumulation of DNA breaks (shown by the TUNEL direct dyeing of the open ends). But a caspase 3 inhibitor Z-DEVD-FMK did not restore the cell proliferation suppressed by GM2, and addition of a fluorescent substrate of caspase 3 Ac-DEVD-AFC did not result in the fluorescence development. So caspase 3 does not participate in downstream pathways of GM2-induced cell apoptosis, and a PCD-effector system other than the apoptosome-mediated one is involved here.  相似文献   

6.
7.
Gangliosides induce apoptosis in the cells of the IL-2-dependent cytotoxic mouse line CTLL-2. Upon incubation with gangliosides for 24 h, their effect resulting in appearance of apoptotic cells, falls in a series GM2 > GM3 > GM1 > GD1a > GD1b > GT1b. In the presence of rIL-2, apoptosis induced by GM1 is suppressed, whereas that induced by GM2 is enhanced (the effect of intracellular agent C2-Cer is independent of this cytokine). The GM1-induced apoptosis is cancelled by the caspase I inhibitor. The gangliosides under study are not able to induce apoptosis in the promyelocyte leukemia cell line HL-60. Physiological aspects of the phenomenon found are discussed.  相似文献   

8.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.  相似文献   

9.
Although signaling by death receptors involves the recruitment of common components into their death-inducing signaling complexes (DISCs), apoptosis susceptibility of various tumor cells to each individual receptor differs quite dramatically. Recently it was shown that, besides caspase-8, caspase-10 is also recruited to the DISCs, but its function in death receptor signaling remains unknown. Here we show that expression of caspase-10 sensitizes MCF-7 breast carcinoma cells to TRAIL- but not tumor necrosis factor (TNF)-induced apoptosis. This sensitization is most obvious at low TRAIL concentrations or when apoptosis is assessed at early time points. Caspase-10-mediated sensitization for TRAIL-induced apoptosis appears to be dependent on caspase-3, as expression of caspase-10 in MCF-7/casp-3 cells but not in caspase-3-deficient MCF-7 cells overcomes TRAIL resistance. Interestingly, neutralization of TRAIL receptor 2 (TRAIL-R2), but not TRAIL-R1, impaired apoptosis in a caspase-10-dependent manner, indicating that caspase-10 enhances TRAIL-R2-induced cell death. Furthermore, whereas processing of caspase-10 was delayed in TNF-treated cells, TRAIL triggered a very rapid activation of caspase-10 and -3. Therefore, we propose a model in which caspase-10 is a crucial component during TRAIL-mediated apoptosis that in addition actively requires caspase-3. This might be especially important in systems where only low TRAIL concentrations are supplied that are not sufficient for the fast recruitment of caspase-8 to the DISC.  相似文献   

10.
Human 8-oxoguanine DNA glycosylase (hOGG1) is the main defense enzyme against mutagenic effects of cellular 7,8-dihydro-8-oxoguanine. In this study, we investigated the biological role of hOGG1 in DNA damage-related apoptosis induced by hydrogen peroxide (H(2)O(2))-derived oxidative stress. The down-regulated expression of hOGG1 by its small interfering RNA prominently triggers the H(2)O(2)-induced apoptosis in human fibroblasts GM00637 and human lung carcinoma H1299 cells via the p53-mediated apoptotic pathway. However, the apoptotic responses were specifically inhibited by hOGG1 overexpression. The p53-small interfering RNA transfection into the hOGG1-deficient GM00637 markedly inhibited the H(2)O(2)-induced activation of p53-downstream target proteins such as p21, Noxa, and caspase-3/7, which eventually resulted in the increased cell viability. Although the cell viability of hOGG1-knockdown H1299 p53 null cells was similar to that of the hOGG1 wild-type H1299, after the overexpression of p53 the hOGG1-knockdown H1299 showed the significantly decreased cell viability compared with that of the hOGG1 wild-type H1299 at the same experimental condition. Moreover, the array comparative genome hybridization analyses revealed that the hOGG1-deficient GM00637 showed more significant changes in the copy number of large regions of their chromosomes in response to H(2)O(2) treatment. Therefore, we suggest that although p53 is a major modulator of apoptosis, hOGG1 also plays a pivotal role in protecting cells against the H(2)O(2)-induced apoptosis at the upstream of the p53-dependent pathway to confer a survival advantage to human fibroblasts and human lung carcinomas through maintaining their genomic stability.  相似文献   

11.
12.
Bovine brain microvascular endothelial cells (BMECs) express GM3 (NeuAc) and GM3 (NeuGc) as the major gangliosides, and GM1, GD1a, GD1b, GT1b as well as sialosylparagloboside and sialosyllactosaminylparagloboside as the minor species. To investigate the metabolic basis of this ganglioside pattern, the activities of eight glycosyltransferases (GM3-, GD1a-, GD3-, LM1-, GM2 (NeuAc)-, GM2 (NeuGc)-, LacCer-, and GM1-synthases) in cultured BMECs were studied. It was found that BMECs possessed high activities of GM3- and GD1a-synthases, and low activities of GM2-, GM1-, and GD3-synthases. Thus, the present study provides evidence that endothelial cells are capable of synthesizing gangliosides in situ and that the high content of GM3 in BMEC is closely associated with high activities of GM3-synthase and low activities of GM2-, GM1-, and GD3-synthases.  相似文献   

13.
14.
15.
Heavy metals are important regulators of cell apoptosis. Manganese (Mn(2+)) is a potent inducer of apoptosis in different cell types, but the precise mechanisms that mediate such effects are not well defined. We previously reported that Mn(2+) was a potent apoptotic agent in human B cells, including lymphoma B cell lines. We show here that Mn(2+)-induced cell death in human B cells is associated with caspase-8-dependent mitochondrial activation leading to caspase-3 activity and apoptosis. We used specific caspase-8 interfering shRNAs to reduce caspase-8 expression, and this also reduced Mn(2+)-induced caspase-3 activation and apoptosis. Mn(2+)-triggered caspase-8 activation is associated with a specific pathway, which is independent of Fas-associated death domain protein, and dependent on the sequential activation of p38-mitogen-activated protein kinase (p38 MAPK) and mitogen- and stress-response kinase 1 (MSK1). Inhibition of p38 activity using either pharmacological inhibitors or dominant-negative mutant forms of p38 blocked Mn(2+)-mediated phosphorylation of MSK1 and blocked subsequent caspase-8 activation. However, specific inhibitors and the expression of a dominant-interfering mutant of MSK1 only inhibited caspase-8 activation, but not p38 activity. These findings suggest a novel model for the regulation of caspase-8 during Mn(2+)-induced apoptosis based on the sequential activation of p38 MAPK, MSK1, caspase-8 and mitochondria, respectively.  相似文献   

16.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

17.
Human skin melanocytes and melanocytes cultured in vitro express GM3 ganglioside almost exclusively, whereas malignant melanomas express high levels of both GM3 and GD3. We now show that treatment of cultured melanocytes with tumor necrosis factor-alpha, particularly in the presence of tetradecanoylphorbol-13-acetate, results in a change in morphology from spindle-shaped to epithelioid and greatly enhanced expression of GD3 ganglioside. This effect is specific and no other ganglioside is affected, except that GM3 expression (which is already high) is also increased. In contrast, these agents did not enhance the already high expression of GD3 on melanoma cells. This result provides an example of the plasticity of glycolipid expression in mammalian cells and their susceptibility to the influence of biological agents.  相似文献   

18.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Le(x) biosyntheses [Basu, S (1991) Glycobiology, 1, 469-475; and ibid, 427-435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of (14)C-L-Serine. At lower concentrations (0-20 microM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both (14)C-sphingolipid and (14)C-ceramide was higher. However, at higher concentrations (20-100 microM), wherein apoptosis occurred in high frequency, the (14)C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death.  相似文献   

19.
The gangliosides expressed by normal melanocytes are predominantly GM3 (greater than 90%) and GD3 (less than 5%). Malignant melanoma can express several other types of gangliosides in significant quantities, including GM2 and GD2. Melanoma patients can develop an immune response against some of these ganglioside antigens on autologous melanoma cells. The four major gangliosides expressed by human melanoma cells (GM3, GD3, GM2, and GD2) were examined for their immunomodulatory effect on lymph node lymphocytes from melanoma patients. Gangliosides were added exogenously to lymphocytes grown in the presence of IL-2. Preferential interactions of specific melanoma gangliosides on IL-2 stimulation were found. While GM2 and GD2 enhanced the lymphocyte response to IL-2, GM3 and GD3 significantly inhibited this response. GM2 and GD2 differ from GM3 and GD3 by the presence of a terminal N-acetylgalactosamine. Since different gangliosides can up-regulate and down-regulate lymphocyte responses to IL-2, the ganglioside phenotype of melanoma cells may play a major role in determining whether an individual tumor causes immune stimulation or suppression.  相似文献   

20.
Kim KB  Choi YH  Kim IK  Chung CW  Kim BJ  Park YM  Jung YK 《Cytokine》2002,20(6):283-288
Epithelial cell apoptosis triggered cooperatively by multiple cytokines contributes to the injury induced by inflammatory responses in the lung and elsewhere. Here we show that interferon-gamma (IFN-gamma) sensitizes A549 cells, human lung epithelial cells, to cytokine-mediated apoptosis by upregulating caspase-8 expression. Pretreating the cells with IFN-gamma potentiated Fas- and TNF-related apoptosis inducing ligand (TRAIL)-induced cell death, but other forms of apoptosis, not mediated via receptors, were unaffected. Western blotting and inhibitor assays showed that IFN-gamma selectively increased expression of caspases-7 and -8, but not caspases-2, -3, -9, or -10, as a necessary step leading to apoptosis. Assaying promoter activity using a luciferase reporter gene indicated that an IFN-gamma response element was located in the 5'-flanking region of the caspase-8 gene, spanning positions -227 to -219. Taken together, these findings suggest that IFN-gamma potentiates Fas- and TRAIL-mediated apoptosis by increasing caspase-8 expression via an IFN-gamma response element in A549 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号