首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin K quinone was shown to be an effective inhibitor of vitamin K epoxide reduction by whole rat liver microsomes. Observation of inhibition was dependent upon the mode of addition of the substrate and inhibitor suggesting segregation of the compounds into different microsomal vesicles under certain conditions. The result is consistent with reduction of both vitamin K quinone and vitamin K epoxide by a single enzyme or a multisite enzyme complex.  相似文献   

2.
A new metabolite of vitamin K, 2(3)-hydroxy-2,3-dihydro-2-methyl,3-phytyl-1,4-naphthoquinone (hydroxyvitamin K), has been identified as a product of vitamin K epoxide metabolism in hepatic microsomes from warfarin-resistant rats, but not in those derived from normal rats. The structure was determined by comparison of the high performance liquid chromatography retention times, UV, IR, CD, and mass spectra of the unknown with chemically synthesized standards. Alterations in the formation of hydroxyvitamin K occur in parallel with alterations in total vitamin K epoxide conversion with respect to reaction time, extent of reaction, detergent stimulation, and inhibition by warfarin. Thus, hydroxyvitamin K appears to be a product of the warfarin-resistant vitamin K epoxide reductase. It is neither a substrate nor an inhibitor of epoxide reduction. Hydroxyvitamin K is formed from both enantiomers of racemic vitamin K epoxide with little stereoselectivity for the configuration of either the oxirane ring or the phytyl side chain. The reaction is stereospecific; however, the biologically formed (+)-vitamin K epoxide yields exclusively (+)-3-hydroxyvitamin K. Observation of this product is discussed as a key to understanding the normal reaction mechanism of the enzyme.  相似文献   

3.
In rats the in vivo effects of a chronic low-dose treatment (+/- 60 micrograms/rat per day) with different coumarins (acenocoumarol, phenprocoumon and warfarin) on hepatic and non-hepatic vitamin K-dependent enzyme systems were compared. The plasma concentrations of the three coumarins differed largely but these differences were not reflected in the microsomal coumarin contents. The non-hepatic microsomes contained less than 20% of the coumarins found in liver microsomes. No substantial differences were observed between the following effects of the three anticoagulant treatments. The blood coagulation factor activities were about 10% of normal. The hepatic microsomal vitamin K epoxide reductase activity was diminished to about 35% of control values. The vitamin K epoxide reductase activities present in kidney, lung, spleen, testis and brain microsomes were less influenced by the coumarin treatments; activities ranged between 45 and 65% of normal. In the liver microsomes a 15-fold accumulation of non-carboxylated precursor proteins was found; in the non-hepatic microsomes this effect was less pronounced but still present. The hepatic vitamin K-dependent carboxylase activity was enhanced but the corresponding non-hepatic enzyme activities were slightly or not affected. In addition, the effects of a chronic low-dose warfarin treatment were compared with those after an acute high dose of the drug.  相似文献   

4.
R G Bell 《Federation proceedings》1978,37(12):2599-2604
Vitamin K is primarily located in hepatic microsomes, where the vitamin K-dependent carboxylation in prothrombin synthesis occurs. Recent evidence supports the idea that the carboxylation is linked to the metabolism of the vitamin--specifically the cyclic interconversion of vitamin K and vitamin K epoxide. The primary site of action of coumarin and indandione anticoagulants appears to be an inhibition of the epoxide-to-vitamin K conversion in this cycle. There is a correlation between the inhibition of prothrombin synthesis and the regeneration of vitamin K from the epoxide by anticoagulants. In hamsters and warfarin-resistant rats prothrombin synthesis and the epoxide-K conversion are less sensitive to warfarin than in the normal rat. The epoxide-K conversion is impaired in resistant rats, which may explain their high vitamin K requirement. There is also a correlation between vitamin K epoxidation and vitamin K-dependent carboxylation, but the apparent link may be because vitamin K hydroquinone is an intermediate in the formation of the epoxide and also the active form in carboxylation. The vitamin K-epoxide cycle is found in extrahepatic tissues such as kidney, spleen, and lung and is inhibited by warfarin.  相似文献   

5.
Alimentary deficiency of vitamin K in rats causes a decrease in the level of in vivo occupied nuclear 1,25 (OH)2D3 receptors in small intestinal mucosa and an 2-2.5-fold increase in the ability of cytosolic 1,25 (OH)2D3-receptor complexes to bind to heterologous DNA. The 1,25 (OH)2D3 binding by the receptors is thereby unaffected. Preincubation of kidney and intestinal cytosol of rats with the secondary K-avitaminosis induced by vitamin K antagonist with the microsomal vitamin K-dependent gamma-carboxylation system sharply decreases the binding of the 1.25 (OH)2D3-receptor complexes to DNA. In rats treated with the vitamin K antagonist in combination with a low calcium diet, the subsequent maintenance on a high calcium diet does not cause, in contrast with vitamin K-repleted animals, a sharp decrease of the level of the in vivo occupied 1,25 (OH)2D3 receptors. In vitro Ca2+ cations decrease the binding of the 1,25 (OH)2D3-receptor complexes to DNA only in vitamin K-repleted rats (ED50 = 2.5 x 10(-6) M). The existence of a vitamin K-dependent Ca-sensitive mechanism regulating the binding of the 1,25 (OH)2D3 receptor to DNA has been postulated for the first time.  相似文献   

6.
A study of the oxygen requirements of the rat liver microsomal vitamin K-dependent carboxylase and vitamin K 2,3-epoxidase indicated that both enzymes had a Km for O2 in the range 60-80 microM. This value was not influenced by vitamin concentration, alterations in carboxylase substrate, Mn2+, or dithiothreitol, and is consistent with the hypothesis that both activities are catalyzed by the same enzyme.  相似文献   

7.
J J Lee  L M Principe  M J Fasco 《Biochemistry》1985,24(25):7063-7070
A partially purified, 200S submicrosomal fraction exhibiting thiol-dependent vitamin K1 (vitamin K) and epoxide reductase activities has been isolated by partial solubilization of rat hepatic microsomes with sodium cholate and separation by centrifugation at 105 000 g into a discontinuous sucrose gradient. At pH 7.4, the rates of vitamin K and vitamin K 2,3-epoxide reduction per milligram of 200S fraction protein were equivalent and were 2.5-3.0 times faster than in microsomes. Reduction of vitamin K 2,3-epoxide occurred in a tightly coupled, two-step reaction initially to vitamin K and subsequently to vitamin K hydroquinone (vitamin KH2). Incorporation of glycerol or sucrose and of sodium cholate into reaction mixtures equivalently affected the rates of both vitamin K and vitamin K 2,3-epoxide reduction, but in the case of epoxide metabolism, the ratios of vitamin KH2/vitamin K were much lower, suggesting that the second reaction has been partially uncoupled from the first. A 14 000-17 000-dalton warfarin-sensitive protein (WSP) that participates in vitamin K and vitamin K 2,3-epoxide reduction in the 200S fraction was identified by incorporation of N-[3H]ethylmaleimide ([3H]NEM) into the catalytically active reduced form of one or more attached disulfides. Reduction of WSP with dithiothreitol was required for reaction with [3H]NEM, and the substrates vitamin K and vitamin K 2,3-epoxide and the inhibitor warfarin all effectively blocked the reaction. 2-Mercaptoethanol could not substitute for dithiothreitol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Vitamin K carboxylase (VKC) is believed to convert vitamin K, in the vitamin K cycle, to an alkoxide-epoxide form which then reacts with CO2 and glutamate to generate γ-carboxyglutamic acid (Gla). Subsequently, vitamin K epoxide reductase (VKOR) is thought to convert the alkoxide-epoxide to a hydroquinone form. By recycling vitamin K, the two integral-membrane proteins, VKC and VKOR, maintain vitamin K levels and sustain the blood coagulation cascade. Unfortunately, NMR or X-ray crystal structures of the two proteins have not been characterized. Thus, our understanding of the vitamin K cycle is only partial at the molecular level. In this study, based on prior biochemical experiments on VKC and VKOR, we propose a hetero-dimeric form of VKC and VKOR that may explain the efficient oxidation and reduction of vitamin K during the vitamin K cycle.  相似文献   

9.
In this in vivo study, the time-dependent effect of oral sodium warfarin was studied in male rats synchronized under a 12-hr light-dark cycle (light 0600-1800). Groups of 5 animals received an oral dose of 500 micrograms/kg of warfarin or saline at 0600 or 1800 and 1 mg/kg of vitamin K 8 hr later and the rats were sacrificed 240 min after vitamin K administration. The activities of the vitamin K reductase and vitamin K epoxide reductase were measured indirectly by determining the content of vitamin K1 and vitamin K epoxide reductase in the plasma and liver. The data obtained in control rats indicated that vitamin K and vitamin K 2,3 epoxide concentrations in plasma and liver were higher (P less than 0.05) at 1800 than at 0600. Warfarin had a greater (P less than 0.05) inhibitory effect on the vitamin K and vitamin K-epoxide reductases at 0600 compared to 1800; plasma levels of S- and R-warfarin did not vary with time of administration. The findings suggest that the activity of both reductases under control conditions, and the warfarin-induced inhibition of these enzymes varied depending on the time of drug administration.  相似文献   

10.
Concomitant intravenous administration of 25-hydroxycholecalciferol and [3H] vitamin D3 to vitamin D-depleted rats did not affect the conversion of [3H] vitamin D3 to 25-OH-[3H] vitamin D3 as indicated by a serum 25-OH-[3H] vitamin D3 to content at 3 and 24 h identical to those observed in animals receiving [3H] vitamin D3 alone. Similarly, pre-dosing with 25-OH vitamin D3 24 h earlier did not affect the conversion. Co-administration to vitamin D depleted rats of vitamin D2 or D3, at 200-fold higher doses than a control group receiving tracer [3H] vitamin D3 alone, resulted in serum 25-OH vitamin D levels that were 15-20 fold higher than the control, indicating a similar metabolic fate for synthetic and natural vitamin D in rats and the ability of increased substrate to overwhelm hepatic constraints on 25-OH vitamin D production. Following intravenous administration of 25-OH-[3H] vitamin D3 to vitamin D depleted rats, hepatic 3H content decreased in parallel with serum radioactivity. Hepatic accumulation of intravenously administered vitamin D3 ([14C] vitamin D3) alone or with 25-OH-[3H] vitamin D3, by vitamin D-depleted rats revealed a marked preference for vitamin D3; the hepatic accumulation of [14C] vitamin D3 increased to 35% of the dose by 45 min, at which time 25-OH-[3H] vitamin D3 hepatic content was 7-fold less, and decreasing. Chromatography of extracts of hepatic subcellular fractions revealed more [14C] vitamin D3 than 25-OH-[3H] vitamin D3 in the microsomes, the reported site of calciferol 25-hydroxylase. Circulating 25-OH vitamin D, therefore, has comparatively minimal potential for hepatic accumulation. Product inhibition of the calciferol 25-hydroxylase must, therefore, result from recently synthesized hepatic 25-OH vitamin D, and is not affected by exogenous 25-OH vitamin D3.  相似文献   

11.
The rat liver microsomal vitamin K-dependent carboxylase catalyzes the carboxylation of glutamyl to gamma-carboxyglutamyl residues in the presence of reduced vitamin K, O2 and CO2. The specificity of the enzyme for the vitamin substrate has been probed by the synthesis of the trifluoromethyl analogs of menaquinone-2 (2-methyl-3-geranyl-1,4-naphthoquinone) and phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone). The reduced (naphthohydroquinone) forms of the trifluoromethyl analogs of the natural vitamins had no substrate activity but were competitive inhibitors of the reaction with a Ki in the same range as the Km of the normal substrate. The oxidized form of the trifluoromethyl analogs of vitamin K also caused inhibition by a mechanism that could not be established. Under the incubation conditions utilized, fluorine was lost from the trifluoromethyl group by a process that was dithiothreitol and high pH dependent.  相似文献   

12.
B A Bouchard  B Furie  B C Furie 《Biochemistry》1999,38(29):9517-9523
The vitamin K-dependent carboxylase catalyzes the posttranslational modification of glutamic acid to gamma-carboxyglutamic acid in the vitamin K-dependent proteins of blood and bone. The vitamin K-dependent carboxylase also catalyzes the epoxidation of vitamin K hydroquinone, an obligatory step in gamma-carboxylation. Using recombinant vitamin K-dependent carboxylase, purified in the absence of propeptide and glutamic acid-containing substrate using a FLAG epitope tag, the role of free cysteine residues in these reactions was examined. Incubation of the vitamin K-dependent carboxylase with the sulfhydryl-reactive reagent N-ethylmaleimide inhibited both the carboxylase and epoxidase activities of the enzyme. This inhibition was proportional to the incorporation of radiolabeled N-ethylmaleimide. Stoichiometric analyses using [(3)H]-N-ethylmaleimide indicated that the vitamin K-dependent carboxylase contains two or three free cysteine residues. Incubation with propeptide, glutamic acid-containing substrate, and vitamin K hydroquinone, alone or in combination, indicated that the binding of a glutamic acid-containing substrate to the carboxylase makes accessible a free cysteine residue that is important for interaction with vitamin K hydroquinone. This is consistent with our previous observation that binding of a glutamic acid-containing substrate activates vitamin K epoxidation and supports the hypothesis that binding of the carboxylatable substrate to the enzyme results in a conformational change which renders the enzyme catalytically competent.  相似文献   

13.
Jin DY  Tie JK  Stafford DW 《Biochemistry》2007,46(24):7279-7283
Vitamin K epoxide (or oxido) reductase (VKOR) is the target of warfarin and provides vitamin K hydroquinone for the carboxylation of select glutamic acid residues of the vitamin K-dependent proteins which are important for coagulation, signaling, and bone metabolism. It has been known for at least 20 years that cysteines are required for VKOR function. To investigate their importance, we mutated each of the seven cysteines in VKOR. In addition, we made VKOR with both C43 and C51 mutated to alanine (C43A/C51A), as well as a VKOR with residues C43-C51 deleted. Each mutated enzyme was purified and characterized. We report here that C132 and C135 of the CXXC motif are essential for both the conversion of vitamin K epoxide to vitamin K and the conversion of vitamin K to vitamin K hydroquinone. Surprisingly, conserved cysteines, 43 and 51, appear not to be important for either reaction. For the in vitro reaction driven by dithiothreitol, the 43-51 deletion mutation retained 85% and C43A/C51A 112% of the wild-type activity. The facile purification of the nine different mutations reported here illustrates the ease and reproducibility of VKOR purification by the method reported in our recent publication [Chu, P.-H., Huang, T.-Y., Williams, J., and Stafford, D. W. (2006) Proc. Natl. Acad. Sci. U S A. 103, 19308-19313].  相似文献   

14.
The vitamins phylloquinone (K1), menadione (K3) and various menaquinones (K2) were compared for their ability to serve as a cofactor for the hepatic vitamin K-dependent carboxylase. It was found that the cofactor activity of the menaquinones varied with the length of the aliphatic side-chain and showed an optimum at MK-3. Menadione was not active at all. The concentration required for half-maximal reaction velocity (K 1/2) was determined for the various menaquinones and decreased at increasing chain length. The K 1/2 value for MK-4 was 3-times lower than that for vitamin K1. Under our in vitro conditions both vitamin K1 and the K2 vitamins were rapidly metabolized into a mixture of the quinone, the hydroquinone and the epoxide form. The fact that at equilibrium the level of these three metabolites was independent of the starting material shows that the vitamin K cycle is operational for vitamin K1 as well as for K2.  相似文献   

15.
Human prostate cancer cells (DU145) implanted into nude mice are deficient in DNase activity. After administration of a vitamin C/vitamin K(3) combination, both alkaline DNase (DNase I) and acid DNase (DNase II) activities were detected in cryosections with a histochemical lead nitrate technique. Alkaline DNase activity appeared 1 hr after vitamin administration, decreased slightly until 2 hr, and disappeared by 8 hr after treatment. Acid DNase activity appeared 2 hr after vitamin administration, reached its highest levels between 4 and 8 hr, and maintained its activity 24 hr after treatment. Methyl green staining indicated that DNase expression was accompanied by a decrease in DNA content of the tumor cells. Microscopic examination of 1-microm sections of the tumors indicated that DNase reactivation and the subsequent degradation of DNA induced multiple forms of tumor cell death, including apoptosis and necrosis. The primary form of vitamin-induced tumor cell death was autoschizis, which is characterized by membrane damage and the progressive loss of cytoplasm through a series of self-excisions. These self-excisions typically continue until the perikaryon consists of an apparently intact nucleus surrounded by a thin rim of cytoplasm that contains damaged organelles.  相似文献   

16.
Abstract

Human vitamin K epoxide reductase (hVKOR) is a small integral membrane protein involved in recycling vitamin K. hVKOR produces vitamin K hydroquinone, a crucial cofactor for γ-glutamyl carboxylation of vitamin K dependent proteins, which are necessary for blood coagulation. Because of this, hVKOR is the target of a common anticoagulant, warfarin. Spurred by the identification of the hVKOR gene less than a decade ago, there have been a number of new insights related to this protein. Nonetheless, there are a number of key issues that have not been resolved; such as where warfarin binds hVKOR, or if human VKOR shares the topology of the structurally characterized but distantly related prokaryotic VKOR. The pharmacogenetics and single nucleotide polymorphisms of hVKOR used in personalized medicine strategies for warfarin dosing should be carefully considered to inform the debate. The biochemical and cell biological evidence suggests that hVKOR has a distinct fold from its ancestral protein, though the controversy will likely remain until structural studies of hVKOR are accomplished. Resolving these issues should impact development of new anticoagulants. The paralogous human protein, VKOR-like1 (VKORL1) was recently shown to also participate in vitamin K recycling. VKORL1 was also recently characterized and assigned a functional role as a housekeeping protein involved in redox homeostasis and oxidative stress with a potential role in cancer regulation. As the physiological interplay between these two human paralogs emerge, the impacts could be significant in a number of diverse fields from coagulation to cancer.  相似文献   

17.
1. Reduction of vitamin K1 2,3-epoxide by rat and human liver vitamin K epoxide reductase is inhibited by N-ethylmaleimide and iodoacetamide. 2. Both enzymes are protected from inhibition by N-ethylmaleimide by vitamin K1 or vitamin K1 2,3-epoxide. 3. Vitamin K1 inhibits reduction of vitamin K1 2,3-epoxide to vitamin K1 which suggests product inhibition of the enzyme.  相似文献   

18.
Activity of the rat liver microsomal vitamin K-dependent carboxylase has been studied at various concentrations of detergent. The activity which could be solubilized by 0.25% Triton X-100 was low but could be greatly increased if vitamin K-deficient rats were given vitamin K a few minutes before they were killed. At higher concentrations of Triton, more activity was solubilized and this effect was not seen. In vitro carboxylation of endogenous microsomal proteins was decreased by 80-90% if vitamin K was administered 1 min before rats were killed, but the amount of assayable prothrombin precursor was decreased by only 20%. Decarboxylated vitamin K-dependent rat plasma proteins were not substrates for the carboxylase and did not influence peptide carboxylase activity significantly. Purified microsomal prothrombin precursors did, however, stimulate carboxylation of peptide substrate and were used as a substrate for the carboxylase in a preparation from precursor depleted vitamin K-deficient rats.  相似文献   

19.
There is little difference in the extent of inactivation of beef liver microsomal vitamin K1 epoxide reductase by N-ethylmaleimide (NEM) whether or not the microsomes are pre-treated with dithiothreitol (DTT). The rat liver microsomal enzyme, however, is inactivated by NEM to a much greater extent if the microsomes are pre-treated with DTT. The beef liver enzyme activity is protected from NEM inactivation by the substrate, vitamin K1 epoxide. Ping-pong kinetics are exhibited by the beef liver enzyme. These results support a mechanism for vitamin K1 epoxide reductase in which the function of the required dithiol is to reduce an active site disulfide bond; however, the geometry of the active sites of the enzyme from rat and beef may be different.  相似文献   

20.
Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] has been shown to be a potent inhibitor of both vitamin K epoxide reductase and the dithiothreitol-dependent vitamin K quinone reductase of rat liver microsomes in vitro. These observations explain the anticoagulant activity of lapachol previously observed in both rats and humans. Lapachol inhibition of the vitamin K epoxide and quinone reductases resembled coumarin anticoagulant inhibition, and was observed in normal strain but not in warfarin-resistant strain rat liver microsomes. This similarity of action suggests that the lactone functionality of the coumarins is not critical for their activity. The initial-velocity steady-state inhibition patterns for lapachol inhibition of the solubilized vitamin K epoxide reductase were consistent with tight binding of lapachol to the oxidized form of the enzyme, and somewhat lower affinity for the reduced form. It is proposed that lapachol assumes a 4-enol tautomeric structure similar to that of the 4-hydroxy coumarins. These structures are analogs of the postulated hydroxyvitamin K enolate intermediate bound to the oxidized form of the enzyme in the chemical reaction mechanism of vitamin K epoxide reductase, thus explaining their high affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号