首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Position-effect variegation (PEV) is the mosaic expression of a euchromatic gene brought into juxtaposition with heterochromatin. Fourteen different transformedDrosophila melanogaster lines with variegating P-element inserts were used to examine the DNA levels of these transgenes. Insert sites include pericentric, telomeric and fourth chromosome regions. Southern blot analyses showed that the heterochromatichsp26 transgenes are underrepresented 1.3- to 33-fold in polytene tissue relative to the endogenous euchromatichsp26 gene. In contrast, the heterochromatichsp26 transgenes are present in approximately the same copy number as the endogenous euchromatichsp26 gene in diploid tissue. It appears unlikely that DNA loss could account for the lack of gene expression in diploid tissues seen with these examples of PEV.  相似文献   

2.
Transgenes inserted into the telomeric regions of Drosophila melanogaster chromosomes exhibit position effect variegation (PEV), a mosaic silencing characteristic of euchromatic genes brought into juxtaposition with heterochromatin. Telomeric transgenes on the second and third chromosomes are flanked by telomeric associated sequences (TAS), while fourth chromosome telomeric transgenes are most often associated with repetitious transposable elements. Telomeric PEV on the second and third chromosomes is suppressed by mutations in Su(z)2, but not by mutations in Su(var)2-5 (encoding HP1), while the converse is true for telomeric PEV on the fourth chromosome. This genetic distinction allowed for a spatial and molecular analysis of telomeric PEV. Reciprocal translocations between the fourth chromosome telomeric region containing a transgene and a second chromosome telomeric region result in a change in nuclear location of the transgene. While the variegating phenotype of the white transgene is suppressed, sensitivity to a mutation in HP1 is retained. Corresponding changes in the chromatin structure and inducible activity of an associated hsp26 transgene are observed. The data indicate that both nuclear organization and local chromatin structure play a role in this telomeric PEV.  相似文献   

3.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

4.
Heterochromatin protein 1 binds transgene arrays   总被引:7,自引:0,他引:7  
Heterochromatin protein 1 (HP1) of Drosophila and its homologs in vertebrates are key components of constitutive heterochromatin. Here we provide cytological evidence for the presence of heterochromatin within a euchromatic chromosome arm by immunolocalization of HP1 to the site of a silenced transgene repeat array. The amount of HP1 associated with arrays in polytene chromosomes is correlated with the array size. Inverted transposons within an array or increased proximity of an array to blocks of naturally occurring heterochromatin may increase transgene silencing without increasing HP1 labeling. Less dense anti-HP1 labeling is found at transposon arrays in which there is no transgene silencing. The results indicate that HP1 targets the chromatin of transposon insertions and binds more densely at a site with repeated sequences susceptible to heterochromatin formation. Received: 26 June 1998; in revised form: 6 July 1998 / Accepted: 12 July 1998  相似文献   

5.
BACKGROUND: The Drosophila melanogaster DDP1 protein is a highly evolutionarily conserved protein that is characterised by the presence of 15 tandemly organized KH domains, known for mediating high-affinity binding to single-stranded nucleic acids (RNA and ssDNA). Consistent with its molecular organization, DDP1 binds single-stranded nucleic acids with high affinity, in vitro. It was shown earlier that, in polytene chromosomes, DDP1 is found in association with chromocenter heterochromatin, suggesting a contribution to heterochromatin formation and/or maintenance. RESULTS: In this paper, the actual contribution of DDP1 to the structural and functional properties of heterochromatin was determined through the analysis of the phenotypes associated with the hypomorphic ddp1(15.1) mutation that was generated through the mobilization of a P element inserted in the second intron of ddp1. ddp1(15.1) behaves as a dominant suppressor of PEV in the variegated rearrangement In(1)w(m4) as well as in several transgenic lines showing variegated expression of a hsp70-white(+) transgene. In polytene chromosomes from homozygous ddp1(15.1) larvae, histone H3-K9 methylation and HP1 deposition at chromocentre heterochromatin are strongly reduced. Our results also show that, when the maternal contribution of DDP1 is reduced, chromosome condensation and segregation are compromised. Moreover, in a ddp1(15.1) mutant background, transmission of the nonessential Dp1187 minichromosome is reduced. CONCLUSIONS: We conclude that DDP1 contributes to the structural and functional properties of heterochromatin. These results are discussed in the context of current models for the formation and maintenance of heterochromatin; in these models, HP1 deposition depends on H3-K9 methylation that, in turn, requires the contribution of the RNAi pathway.  相似文献   

6.
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS–GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR phenotype and induces specific swellings in heterochromatin.  相似文献   

7.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

8.
We studied the influence of the Suppressor of Underreplication (SuUR) gene expression on the intercalary heterochromatin (IH) regions of Drosophila melanogaster polytene chromosomes. We observed a strong positive correlation between increased SuUR expression, underreplication extent, amount of DNA truncation, and formation of ectopic contacts in IH regions. SuUR overexpression from heat shock-driven transgene results in the formation of partial chromosomal aberrations whose breakpoints map exclusively to the regions of intercalary and pericentric heterochromatin. It is important to note that all these effects are seen only if SuUR overexpression is induced during early stages of chromosome polytenization. Therefore, we developed the idea that ectopic pairing results from the joining of free DNA ends, which are formed as a consequence of underreplication.  相似文献   

9.
10.
Monod C  Aulner N  Cuvier O  Käs E 《EMBO reports》2002,3(8):747-752
white-mottled (wm4) position-effect variegation (PEV) arises by translocation of the white gene near the pericentric AT-rich 1.688 g/cm3 satellite III (SATIII) repeats of the X chromosome of Drosophila. The natural and artificial A•T-hook proteins D1 and MATH20 modify wm4 PEV in opposite ways. D1 binds SATIII repeats and enhances PEV, presumably via a recruitment of protein partners, whereas MATH20 suppresses it. We show that D1 and MATH20 compete for binding to identical sites of SATIII repeats in vitro and that conditional MATH20 expression results in a displacement of D1 from pericentric heterochromatin in vivo. In the presence of intermediate levels of MATH20, we show that this displacement becomes selective for SATIII repeats. These results strongly suggest that the suppression of wm4 PEV by MATH20 is due to a displacement of D1 from its preferred binding sites and provide additional support for a direct role of D1 in the assembly of AT-rich heterochromatin.  相似文献   

11.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

12.
The ChlR1 DNA helicase, encoded by DDX11 gene, which is responsible for Warsaw breakage syndrome (WABS), has a role in sister-chromatid cohesion. In this study, we show that human ChlR1 deficient cells exhibit abnormal heterochromatin organization. While constitutive heterochromatin is discretely localized at perinuclear and perinucleolar regions in control HeLa cells, ChlR1-depleted cells showed dispersed localization of constitutive heterochromatin accompanied by disrupted centromere clustering. Cells isolated from Ddx11−/− embryos also exhibited diffuse localization of centromeres and heterochromatin foci. Similar abnormalities were found in HeLa cells depleted of combinations of HP1α and HP1β. Immunofluorescence and chromatin immunoprecipitation showed a decreased level of HP1α at pericentric regions in ChlR1-depleted cells. Trimethyl-histone H3 at lysine 9 (H3K9-me3) was also modestly decreased at pericentric sequences. The abnormality in pericentric heterochromatin was further supported by decreased DNA methylation within major satellite repeats of Ddx11−/− embryos. Furthermore, micrococcal nuclease (MNase) assay revealed a decreased chromatin density at the telomeres. These data suggest that in addition to a role in sister-chromatid cohesion, ChlR1 is also involved in the proper formation of heterochromatin, which in turn contributes to global nuclear organization and pleiotropic effects.  相似文献   

13.
Heterochromatin formation plays an important role in gene regulation and the maintenance of genome integrity. Here we present results from a study of the D. melanogaster gene vig, encoding an RNAi complex component and its homolog vig2 (CG11844) that support their involvement in heterochromatin formation and/or maintenance. Protein null mutations vigEP812 and vig2PL470 act as modifiers of Position Effect Variegation (PEV). VIG and Vig2 are present in polytene chromosomes and partially overlap with HP1. Quantitative immunoblots show depletion of HP1 and HP2 (large isoform) in isolated nuclei from the vigEP812 mutant. The vig2PL470 mutant strain demonstrates a decreased level of H3K9me2. Pull-down experiments using antibodies specific to HP1 recovered both VIG and Vig2. The association between HP1 and both VIG and Vig2 proteins depends on an RNA component. The above data and the developmental profiles of the two genes suggest that Vig2 may be involved in heterochromatin targeting and establishment early in development, while VIG may have a role in stabilizing HP1/HP2 chromatin binding during later stages.  相似文献   

14.
Gilbert MK  Tan YY  Hart CM 《Genetics》2006,173(3):1365-1375
Binding sites for the Drosophila boundary element-associated factors BEAF-32A and -32B are required for the insulator activity of the scs' insulator. BEAF binds to hundreds of sites on polytene chromosomes, indicating that BEAF-utilizing insulators are an important class in Drosophila. To gain insight into the role of BEAF in flies, we designed a transgene encoding a dominant-negative form of BEAF under GAL4 UAS control. This BID protein encompasses the BEAF self-interaction domain. Evidence is provided that BID interacts with BEAF and interferes with scs' insulator activity and that BEAF is the major target of BID in vivo. BID expression during embryogenesis is lethal, implying that BEAF is required during early development. Expression of BID in eye imaginal discs leads to a rough-eye phenotype, and this phenotype is rescued by a third copy of the BEAF gene. Expression of BID in salivary glands leads to a global disruption of polytene chromatin structure, and this disruption is largely rescued by an extra copy of BEAF. BID expression also enhances position-effect variegation (PEV) of the w(m4h) allele and a yellow transgene inserted into the pericentric heterochromatin of chromosome 2R, while a third copy of the BEAF gene suppresses PEV of both genes. These results support the hypothesis that BEAF-dependent insulators function by affecting chromatin structure or dynamics.  相似文献   

15.
We have investigated the distribution of three heterochromatic proteins [SUppressor of UnderReplication (SUUR), heterochromatin protein 1 (HP1), and SU(VAR)3–9] in chromosomes of nurse cells (NCs) and have compared the data obtained with the distribution of the same proteins in salivary gland (SG) chromosomes. In NC chromosomes, the SU(VAR)3–9 protein was found in pericentric heterochromatin and at 223 sites on euchromatic arms, while in SG chromosomes, it was mainly restricted to the chromocenter. In NC chromosomes, the HP1 and SUUR proteins bind to 331 and 256 sites, respectively, which are almost twice the number of sites in SG chromosomes. The distribution of the HP1 and SU(VAR)3–9 proteins depends on the SuUR gene. A mutation in this gene results in a dramatic decrease in the amount of SU(VAR)3–9 binding sites in autosomes. In the X chromosome, these sites are relocated in comparison to the SuUR +, and their total number only varies slightly. HP1 binding sites are redistributed in chromosomes of SuUR mutants, and their overall number did not change as considerably as SU(VAR)3–9. These data together point to an interaction of these three proteins in Drosophila NC chromosomes.Electronic Supplementary Material Supplementary material is available for this article at.  相似文献   

16.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   

17.
In(1LR)pn2a is a pericentric inversion with a euchromatic breakpoint in the 2E polytene region and a heterochromatic breakpoint in the right arm of the X chromosome. It is associated with position-effect variegation (PEV) of the pn, wapl, Pgd and other vital loci of the 2E region, which are relocated near the bulk of the X heterochromatin. Cytological analysis showed that the rearrangement brings the 1A–2E euchromatic segment directly into contact with a major portion of the h34 block, a heterochromatic region that is positively stained by the N-banding technique and contains the AAGAG satellite sequences. Molecular cloning revealed the presence of a new junction between euchromatin and AAGAG satellite sequences and demonstrated that the euchromatic breakpoint of In(1LR)pn2a lies in the vinculin gene. In the X ray-induced secondary rearrangement In(1LR)r30, consisting of a pericentric inversion superimposed on In(1LR)pn2a, the h34 material remains associated with the 2E region but is separated from the rest of the X heterochromatin. In this case, the pn, wapl and Pgd loci no longer variegate, suggesting that the satellite-containing h34 region is not able per se to induce detectable PEV on the adjacent euchromatic genes. Received in revised form: 15 June 1997 / Accepted: 16 September 1997  相似文献   

18.
Drosophila melanogaster heterochromatin protein 2 (HP2) interacts with heterochromatin protein 1 (HP1). In polytene chromosomes, HP2 and HP1 colocalize at the chromocenter, telomeres, and the small fourth chromosome. We show here that HP2 is present in the arms as well as the centromeric regions of mitotic chromosomes. We also demonstrate that Su(var)2-HP2 exhibits a dosage-dependent modification of variegation of a yellow reporter transgene, indicating a structural role in heterochromatin formation. We have isolated and characterized 14 new mutations in the Su(var)2-HP2 gene. Using wm4h, many (but not all) mutant alleles show dominant Su(var) activity. Su(var)2-HP2 mutant larvae show a wide variety of mitotic abnormalities, but not the telomere fusion seen in larvae deficient for HP1. The Su(var)2-HP2 gene codes for two isoforms: HP2-L (approximately 365 kDa) and HP2-S (approximately 175 kDa), lacking exons 5 and 6. In general, mutations that affect only the larger isoform result in more pronounced defects than do mutations common to both isoforms. This suggests that an imbalance between large and small isoforms is particularly deleterious. These results indicate a role for HP2 in the structural organization of chromosomes and in heterochromatin-induced gene silencing and show that the larger isoform plays a critical role in these processes.  相似文献   

19.
Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo–formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号