首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Curcumin has been shown to exhibit anti-inflammatory, antimutagenic, and anticarcinogenic activities. However, the effect of curcumin on the maturation and immunostimulatory function of dendritic cells (DC) largely remains unknown. In this study, we examined whether curcumin can influence surface molecule expression, cytokine production, and their underlying signaling pathways in murine bone marrow-derived DC. DC were derived from murine bone marrow cells and used as immature or LPS-stimulated mature cells. The DC were tested for surface molecule expression, cytokine production, dextran uptake, the capacity to induce T cell differentiation, and their underlying signaling pathways. Curcumin significantly suppressed CD80, CD86, and MHC class II expression, but not MHC class I expression, in the DC. The DC also exhibited impaired IL-12 expression and proinflammatory cytokine production (IL-1beta, IL-6, and TNF-alpha). The curcumin-treated DC were highly efficient at Ag capture, via mannose receptor-mediated endocytosis. Curcumin inhibited LPS-induced MAPK activation and the translocation of NF-kappaB p65. In addition, the curcumin-treated DC showed an impaired induction of Th1 responses and a normal cell-mediated immune response. These novel findings provide new insight into the immunopharmacological role of curcumin in impacting on the DC. These novel findings open perspectives for the understanding of the immunopharmacological role of curcumin and therapeutic adjuvants for DC-related acute and chronic diseases.  相似文献   

3.
Dendritic cells (DC), the most potent APCs, can initiate the immune response or help induce immune tolerance, depending upon their level of maturation. DC maturation is associated with activation of the NF-kappaB pathway, and the primary NF-kappaB protein involved in DC maturation is RelB, which coordinates RelA/p50-mediated DC differentiation. In this study, we show that silencing RelB using small interfering RNA results in arrest of DC maturation with reduced expression of the MHC class II, CD80, and CD86. Functionally, RelB-silenced DC inhibited MLR, and inhibitory effects on alloreactive immune responses were in an Ag-specific fashion. RelB-silenced DC also displayed strong in vivo immune regulation. An inhibited Ag-specific response was seen after immunization with keyhole limpet hemocyanin-pulsed and RelB-silenced DC, due to the expansion of T regulatory cells. Administration of donor-derived RelB-silenced DC significantly prevented allograft rejection in murine heart transplantation. This study demonstrates for the first time that transplant tolerance can be induced by means of RNA interference using in vitro-generated tolerogenic DC.  相似文献   

4.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

5.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have introduced MHC class I-restricted TCRs into postthymic murine CD4+ T cells and examined CD4+ T cell activation and helper function in vitro and in vivo. These experiments indicate that Ag-specific CD4+ T cell help can be induced by the engagement of MHC class I-restricted TCRs in peripheral CD4+ T cells but that it is highly dependent on the coreceptor function of the CD8beta-chain. The ability to generate Th cell immunity by infusion of MHC class I-restricted Th cells may prove useful for the induction of tumor-specific T cell immunity in cases where MHC class II-associated epitopes are lacking.  相似文献   

6.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand expressed on activated T and NK cells. A LAG-3Ig fusion protein has been used in mice as an adjuvant protein to induce antitumor responses and specific CD8 and CD4 Th1 responses to nominal Ags. In this work we report on the effect of LAG-3Ig on the maturation and activation of human monocyte-derived dendritic cells (DC). LAG-3Ig binds MHC class II molecules expressed in plasma membrane lipid rafts on immature human DC and induces rapid morphological changes, including the formation of dendritic projections. LAG-3Ig markedly up-regulates the expression of costimulatory molecules and the production of IL-12 and TNF-alpha. Consistent with this effect on DC maturation, LAG-3Ig disables DC in their capacity to capture soluble Ags. These events are associated with the acquisition of professional APC function, because LAG-3Ig increases the capacity of DC to stimulate the proliferation and IFN-gamma response by allogeneic T cells. These effects were not observed when using ligation of MHC class II by specific mAb. Class II-mediated signals induced by a natural ligand, LAG-3, lead to complete maturation of DC, which acquire the capacity to trigger naive T cells and drive polarized Th1 responses.  相似文献   

7.
Dendritic cells (DC) are the major APCs involved in naive T cell activation making them prime targets of vaccine research. We observed that mRNA was efficiently transfected, resulting in superior translation in DC compared with other professional APCs. A single stimulation of T cells by HIV gag-encoded mRNA-transfected DC in vitro resulted in primary CD4(+) and CD8(+) T cell immune responses at frequencies of Ag-specific cells (5-12.5%) similar to primary immune responses observed in vivo in murine models. Additionally, mRNA transfection also delivered a maturation signal to DC. Our results demonstrated that mRNA-mediated delivery of encoded Ag to DC induced potent primary T cell responses in vitro. mRNA transfection of DC, which mediated efficient delivery of antigenic peptides to MHC class I and II molecules, as well as delivering a maturation signal to DC, has the potential to be a potent and effective anti-HIV T cell-activating vaccine.  相似文献   

8.
The effects of epigallocatechin-3-gallate (EGCG) on dendritic cells (DC) maturation were investigated. EGCG, in a dose-dependent manner, profoundly inhibited CD80, CD86, and MHC class I and II expression on bone marrow-derived murine myeloid DC. EGCG restored the decreased dextran-FITC uptake and inhibited enhanced IL-12 production by LPS-treated DC. EGCG-treated DC were poor stimulators of nai;ve allogeneic T-cell proliferation and reduced levels of IL-2 production in responding T cells. EGCG-pretreated DC inhibited LPS-induced MAPKs, such as ERK1/2, p38, JNK, and NF-kappaB p65 translocation. Therefore, the molecular mechanisms by which EGCG antagonized LPS-induced DC maturation appeared to involve the inhibition of MAPK and NF-kappaB activation. These novel findings provide new insight into the immunopharmacological role of EGCG and suggest a novel approach to the manipulation of DC for therapeutic application of autoimmune and allergic diseases.  相似文献   

9.
Previous studies suggested that depending on their maturation state, dendritic cells (DC) could either induce T cell tolerance (immature and semimature DC) or T cell activation (mature DC). Pretreatment of C57BL/6 mice with encephalitogenic myelin oligodendrocyte glycoprotein (MOG)(35-55) peptide-loaded semimature DC protected from MOG-induced autoimmune encephalomyelitis. This protection was mediated by IL-10-producing CD4 T cells specific for the self Ag. Here we show that semimature DC loaded with the MHC class II-restricted nonself peptide Ag (OVA) induce an identical regulatory T cell cytokine pattern. However, semimature DC loaded simultaneously with MHC class II- and MHC class I-restricted peptides, could efficiently initiate CD8 T cell responses leading to autoimmune diabetes in a TCR-transgenic adoptive transfer model. Double-peptide-loaded semimature DC also induced simultaneously in the same animal partially activated CD8 T cells with cytolytic function as well as protection from MOG-induced autoimmune encephalomyelitis. Our study suggests that the decision between tolerance and immunity not only depends on the DC, but also on the type and activation requirements of the responding T cell.  相似文献   

10.
The contribution of CD4+ T cells to dendritic cell (DC) activation and to the induction of CD8+ T cell responses in vivo was investigated using a model of antitumor immune responses. Immunization with peptide-loaded MHC class II-deficient (MHC class II-/-) DC induced the activation of Ag-specific CD8+ T cells and their accumulation in the lymph nodes and spleens of immunized mice. The accumulation induced by MHC class II-/- DC immunization was lower than the accumulation observed after immunization with MHC class II+/+ DC. Similarly, immunization with peptide-loaded, MHC class II-/- DC induced some degree of protection against tumor challenge, but this protection was lower than the protection achieved after immunization with MHC class II+/+ DC. Incubation with a membrane-associated form of CD40 ligand resulted in the up-regulation of costimulatory molecules on MHC class II-/- DC and fully rescued their ability to induce antitumor immunity. We conclude that CD4+ T cells play a critical role in the generation of antitumor immune responses through their capacity to induce the activation of DC via CD40/CD40 ligand interaction, and thus maximize CD8+ T cell responses.  相似文献   

11.
Leprosy presents with a clinical spectrum of skin lesions that span from strong Th1-mediated cellular immunity and control of bacillary growth at one pole to poor Ag-specific T cell immunity with extensive bacillary load and Th2 cytokine-expressing lesions at the other. To understand how the immune response to Mycobacterium leprae is regulated, human dendritic cells (DC), potent inducers of adaptive immune responses, exposed to M. leprae, Mycobacterium tuberculosis (Mtb), and Mycobacterium bovis bacillus Calmette-Guerin (BCG) were studied for their ability to be activated and to prime T cell proliferation. In contrast with Mtb and BCG, M. leprae did not induce DC activation/maturation as measured by the expression of selected surface markers and proinflammatory cytokine production. In MLR, T cells did not proliferate in response to M. leprae-stimulated DC. Interestingly, M. leprae-exposed MLR cells secreted increased Th2 cytokines as well as similar Th1 cytokine levels as compared with Mtb- and BCG-exposed cells. Gene expression analysis revealed a reduction in levels of mRNA of DC activation and maturation markers following exposure to M. leprae. Our data suggest that M. leprae does not induce and probably suppresses in vitro DC maturation/activation, whereas Mtb and BCG are stimulatory.  相似文献   

12.
Dendritic cells (DC) express a set of germline-encoded transmembrane Toll-like receptors that recognize shared microbial products, such as Escherichia coli LPS, termed pathogen-associated molecular patterns. Analysis of the in vivo response to pathogen-associated molecular patterns has uncovered their ability to induce the migration and the maturation of DC, favoring thus the delivery of Ag and costimulatory signals to naive T cells in vivo. Bacterial superantigens constitute a particular class of pathogen-derived molecules known to induce a potent inflammatory response in vivo, secondary to the activation of a large repertoire of T cells. We demonstrate in this work that Staphylococcal superantigens induce migration and maturation of DC populations in vivo. However, in contrast to LPS, superantigens failed to induce DC maturation in RAG or MHC class II-deficient mice, suggesting that T cell activation was a prerequisite for DC maturation. This conclusion was further supported by the finding that T cell activation induced by 1) mitogenic anti-CD3 mAbs, 2) allo-MHC determinants, or 3) nominal Ag in a TCR-transgenic model induces DC maturation in vivo. These studies also revealed that DC that matured in response to T cell mitogens display, comparatively to LPS, a distinctive phenotype characterized by high expression of the MHC class II, CD40, and CD205 markers, but only moderate (CD86) to minimal (CD80) expression of CD28/CTLA4 ligands. This work demonstrates that activation of a sufficient number of naive T cells in vivo constitutes a novel form of immune danger, functionally linked to DC maturation.  相似文献   

13.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

14.
We investigated differentiation of CD4 T cells responding to Ag presented by bone marrow-derived dendritic cells (DC) in association with MHC class II (MHC II) molecules. Peptides encapsulated in liposomes opsonized by IgG were taken up by endocytosis. MHC II-peptide-specific T cells responding to this Ag were polarized to a Th1 cytokine profile in a CD40-, CD28-, MyD88-, and IL-12-dependent manner. Th2 responses were obtained from the same transgenic T cell population exposed to the same DC on which MHC-peptide complexes had dispersed for 48 h following uptake of FcR-targeted liposomes. DC that took up the same FcR-targeted liposomes and then were exposed to methyl-beta-cyclodextrin, which chelates cholesterol and dissociates lipid microdomains, also stimulated Th2 differentiation. Incubation of T cells with DC incubated with peptides directly binding to MHC II resulted in Th2 responses, whether or not the DC were coincubated with opsonized liposomes as a maturation stimulus. CD4 Th1 polarization thus appears to depend on MHC II-peptide complex clustering in DC lipid microdomains and the time between peptide loading and T cell encounter.  相似文献   

15.
16.
NF-kappaB-inducing kinase (NIK) is responsible for activation of the non-canonical p100 processing pathway of NF-kappaB activation. This kinase has been shown to be critical for activation of this pathway after signaling through several TNF family members including CD40. The functional importance of this pathway in CD40 and TLR-induced dendritic cell (DC) differentiation was studied in vivo in the alymphoplasia (Aly) mouse. The Aly mouse expresses a mutant NIK molecule that prohibits the induction of the non-canonical pathway. We show that while MHC class II presentation and in vivo migration of Aly DCs is intact, these cells are unable to cross-prime CD8+ T cells to exogenous Ag. Gene expression array analysis of DCs matured in vivo indicates multiple defects in Ag processing pathways after maturation and provide a global view of the genes that are regulated by the NF-kappaB2 pathway in DCs. These experiments indicate a possible role for NIK in mediating cross-priming of soluble Ag. In addition, our findings explain the profound immune unresponsiveness of the Aly mouse.  相似文献   

17.
Dendritic cells (DC) are professional antigen-presenting cells that possess specific and efficient mechanisms to initiate immune responses. Upon encounter with pathogens, immature DC will go through a maturation process that converts them to highly immunogenic mature DC. Despite the fact that nitric oxide (NO) was produced in large amounts in maturing DC, it is still unclear whether NO is the key molecule that initiates and enhances DC maturation and T cell proliferation, respectively. Here, we report that NO donor and overexpression of either nitric-oxide synthase 2 (NOS2) or nitric-oxide synthase 3 (NOS3) alone can induce surface expression of major histocompatibility complex class II (MHC II) and both the essential co-stimulatory molecules CD80 and CD86 in immature DC. Consistently, NO donor-treated immature DC were capable of enhancing T cell proliferation in vitro in the absence of lipolysaccharide. Interestingly, NOS2 interacts with CD74 (the MHC II-associated invariant chain), and the degradation of CD74 by caspases in immature DC was inhibited upon treatment with NO donor. Because the trafficking of MHC II is CD74-dependent, the increase in cell surface localization of MHC II in maturing DC is in part due to the increase in CD74 protein expression in the presence of NOS2 and NO.  相似文献   

18.
Exosomes, nano‐sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC‐peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T‐cell activation in vitro. When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN‐γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN‐γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.  相似文献   

19.
The Src family kinase Lyn plays both stimulatory and inhibitory roles in hemopoietic cells. In this report we provide evidence that Lyn is involved in dendritic cell (DC) generation and maturation. Loss of Lyn promoted DC expansion in vitro from bone marrow precursors due to enhanced generation and accelerated differentiation of Lyn-deficient DC progenitors. Differentiated Lyn-deficient DCs also had a higher survival rate. Similarly, the CD11c-positive cell number was increased in aged Lyn-deficient mice in vivo. In contrast to their enhanced generation, lyn-/- DCs failed to mature appropriately in response to innate stimuli, resulting in DCs with lower levels of MHC class II and costimulatory molecules. In addition, IL-12 production and Ag-specific T cell activation were reduced in lyn-/- DCs after maturation, resulting in impaired Th1 responses. This is the first study to characterize Lyn-deficient DCs. Our results suggest that Lyn kinase plays uniquely negative and positive regulatory roles in DC generation and maturation, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号