首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DExD/H-box Prp5 protein (Prp5p) is an essential, RNA-dependent ATPase required for pre-spliceosome formation during nuclear pre-mRNA splicing. In order to understand how this protein functions, we used in vitro, biochemical assays to examine its association with the spliceosome from Saccharomyces cerevisiae. GST-Prp5p in splicing assays pulls down radiolabeled pre-mRNA as well as splicing intermediates and lariat product, but reduced amounts of spliced mRNA. It cosediments with active spliceosomes isolated by glycerol gradient centrifugation. In ATP-depleted extracts, GST-Prp5p associates with pre-mRNA even in the absence of spliceosomal snRNAs. Maximal selection in either the presence or absence of ATP requires a pre-mRNA with a functional intron. Prp5p is present in the commitment complex and functions in subsequent pre-spliceosome formation. Reduced Prp5p levels decrease levels of commitment, pre-spliceosomal and spliceosomal complexes. Thus Prp5p is most likely an integral component of the spliceosome, being among the first splicing factors associating with pre-mRNA and remaining until spliceosome disassembly. The results suggest a model in which Prp5p recruits the U2 snRNP to pre-mRNA in the commitment complex and then hydrolyzes ATP to promote stable association of U2 in the pre-spliceosome. They also suggest that Prp5p could have multiple ATP-independent and ATP-dependent functions at several stages of the splicing cycle.  相似文献   

2.
The 3' end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor. Using mutants of MUD2 and BBP, we show that the BBP-Mud2p complex bridges partner-specific Prp39p, Mer1p, Clf1p and Smy2p two-hybrid interactions. In addition to inhibiting Mud2p association, the bbpDelta56 mutation impairs splicing, enhances pre-mRNA release from the nucleus, and similar to a mud2::KAN knockout, suppresses a lethal sub2::KAN mutation. Unexpectedly, rather than exacerbating bbpDelta56, the mud2::KAN mutation partially suppresses a pre-mRNA accumulation defect observed with bbpDelta56. We propose that a BBP-Mud2p heterodimer binds as a unit to the branchpoint in vivo and serves as a target for the Sub2p-DExD/H-box ATPase and for other splicing factors during spliceosome assembly. In addition, our results suggest the possibility that the Mud2p may enhance the turnover of pre-mRNA with impaired BBP-branchpoint association.  相似文献   

3.
4.
Rutz B  Séraphin B 《The EMBO journal》2000,19(8):1873-1886
The MSL5 gene, which codes for the splicing factor BBP/ScSF1, is essential in Saccharomyces cerevisiae, yet previous analyses failed to reveal a defect in assembly of (pre)-spliceosomes or in vitro splicing associated with its depletion. We generated 11 temperature-sensitive (ts) mutants and one cold-sensitive (cs) mutant in the corresponding gene and analyzed their phenotypes. While all mutants were blocked in the formation of commitment complex 2 (CC2) at non-permissive and permissive temperature, the ts mutants showed no defect in spliceosome formation and splicing in vitro. The cs mutant was defective in (pre)-spliceosome formation, but residual splicing activity could be detected. In vivo splicing of reporters carrying introns weakened by mutations in the 5' splice site and/or in the branchpoint region was affected in all mutants. Pre-mRNA leakage to the cytoplasm was strongly increased (up to 40-fold) in the mutants. A combination of ts mutants with a disruption of upf1, a gene involved in nonsense-mediated decay, resulted in a specific synthetic growth phenotype, suggesting that the essential function of SF1 in yeast could be related to the retention of pre-mRNA in the nucleus.  相似文献   

5.
Requirements for U2 snRNP addition to yeast pre-mRNA.   总被引:8,自引:2,他引:6       下载免费PDF全文
The in vitro spliceosome assembly pathway is conserved between yeast and mammals as U1 and U2 snRNPs associate with the pre-mRNA prior to U5 and U4/U6 snRNPs. In yeast, U1 snRNP-pre-mRNA complexes are the first splicing complexes visualized on native gels, and association with U1 snRNP apparently commits pre-mRNA to the spliceosome assembly pathway. The current study addresses U2 snRNP addition to commitment complexes. We show that commitment complex formation is relatively slow and does not require ATP, whereas U2 snRNP adds to the U1 snRNP complexes in a reaction that is relatively fast and requires ATP or hydrolyzable ATP analogs. In vitro spliceosome assembly was assayed in extracts derived from strains containing several U1 sRNA mutations. The results were consistent with a critical role for U1 snRNP in early complex formation. A mutation that disrupts the base-pairing between the 5' end of U1 snRNA and the 5' splice site allows some U2 snRNP addition to bypass the ATP requirement, suggesting that ATP may be used to destabilize certain U1 snRNP:pre-mRNA interactions to allow subsequent U2 snRNP addition.  相似文献   

6.
Early commitment of yeast pre-mRNA to the spliceosome pathway.   总被引:39,自引:12,他引:27       下载免费PDF全文
Pre-mRNA splicing in vitro is preceded by complex formation (spliceosome assembly). U2 small nuclear RNA (snRNA) is found in the earliest form of the spliceosome detected by native gel electrophoresis, both in Saccharomyces cerevisiae and in metazoan extracts. To examine the requirements for the formation of this early complex (band III) in yeast extracts, we cleaved the U2 snRNA by oligonucleotide-directed RNase H digestion. U2 snRNA depletion by this means inhibits both splicing and band III formation. Using this depleted extract, we were able to design a chase experiment which shows that a pre-mRNA substrate is committed to the spliceosome assembly pathway in the absence of functional U2 snRNP. Interactions occurring during the commitment step are highly resistant to the addition of an excess of unlabeled substrate and require little or no ATP. Sequence requirements for this commitment step have been analyzed by competition experiments with deletion mutants: both the 5' splice site consensus sequence and the branch point TACTAAC box sequence are necessary. These experiments strongly suggest that the initial assembly process requires a trans-acting factor(s) (RNA and/or proteins) that recognizes and stably binds to the two consensus sequences of the pre-mRNA prior to U2 snRNP binding.  相似文献   

7.
J E Mermoud  P T Cohen    A I Lamond 《The EMBO journal》1994,13(23):5679-5688
Splicing of mRNA precursors (pre-mRNA) is preceded by assembly of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr-specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre-spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre-mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1-inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre-mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.  相似文献   

8.
Commitment complexes contain U1 snRNP as well as pre-mRNA and are the earliest functional complexes that have been described during in vitro spliceosome assembly. We have used a gel retardation assay to analyze the role of the yeast pre-mRNA cis-acting sequences in commitment complex formation. The results suggest that only a proper 5' splice site sequence is required for efficient U1 snRNA-pre-mRNA complex formation. A role for the highly conserved UACUAAC branchpoint sequence is indicated, however, by competition experiments and by the direct analysis of branchpoint mutant substrates, which cannot form one of the two commitment complex species observed with wild-type substrates. The results suggest that the formation of a U1 snRNP-pre-mRNA complex is not dependent upon the presence of a branchpoint sequence but that the branchpoint sequence is recognized prior to U2 snRNP addition during in vitro spliceosome assembly.  相似文献   

9.
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.  相似文献   

10.
11.
SMNrp, also termed SPF30, has recently been identified in spliceosomes assembled in vitro. We have functionally characterized this protein and show that it is an essential splicing factor. We show that SMNrp is a 17S U2 snRNP-associated protein that appears in the pre-spliceosome (complex A) and the mature spliceosome (complex B) during splicing. Immunodepletion of SMNrp from nuclear extract inhibits the first step of pre-mRNA splicing by preventing the formation of complex B. Re-addition of recombinant SMNrp to immunodepleted extract reconstitutes both spliceosome formation and splicing. Mutations in two domains of SMNrp, although similarly deleterious for splicing, differed in their consequences on U2 snRNP binding, suggesting that SMNrp may also engage in interactions with splicing factors other than the U2 snRNP. In agreement with this, we present evidence for an additional interaction between SMNrp and the [U4/U6.U5] tri-snRNP. A candidate that may mediate this interaction, namely the U4/U6-90 kDa protein, has been identified. We suggest that SMNrp, as a U2 snRNP-associated protein, facilitates the recruitment of the [U4/U6.U5] tri-snRNP to the pre-spliceosome.  相似文献   

12.
Lim SR  Hertel KJ 《Molecular cell》2004,15(3):477-483
Differential recognition of exons by the spliceosome regulates gene expression and exponentially increases the complexity of metazoan proteomes. After definition of the exons, the spliceosome is activated by a series of sequential structural rearrangements. Formation of the first ATP-independent spliceosomal complex commits the pre-mRNA to the general splicing pathway. However, the time at which a commitment to a specific splice site choice and pairing is made is unknown. Here, we demonstrate that alternative splicing patterns are irreversibly chosen at a kinetic step different from the ATP-independent commitment to splicing. Splice sites become committed at the first ATP-dependent spliceosomal complex when rearrangements lock U2 snRNP onto the pre-mRNA. Thus, commitment to the splicing pathway and commitment to splice site pairing are separate steps during spliceosomal assembly, and ATP hydrolysis drives the irreversible juxtaposition of exons within the spliceosome.  相似文献   

13.
The binding of a U1 small nuclear ribonucleoprotein (snRNP) particle to the 5' splice site region of a pre-mRNA is a primary step of intron recognition. In this report, we identify a novel 75-kDa polypeptide of Saccharomyces cerevisiae, Prp39p, necessary for the stable interaction of mRNA precursors with the snRNP components of the pre-mRNA splicing machinery. In vivo, temperature inactivation or metabolic depletion of Prp39p blocks pre-mRNA splicing and causes growth arrest. Analyses of cell extracts reveal a specific and dramatic increase in the electrophoretic mobility of the U1 snRNP particle upon Prp39p depletion and demonstrate that extracts deficient in Prp39p activity are unable to form either the CC1 or CC2 commitment complex band characteristic of productive U1 snRNP/pre-mRNA association. Immunological studies establish that Prp39p is uniquely associated with the U1 snRNP and is recruited with the U1 snRNP into splicing complexes. On the basis of these and related observations, we propose that Prp39p functions, at least in part, prior to stable branch point recognition by the U1 snRNP particle to facilitate or stabilize the U1 snRNP/5' splice site interaction.  相似文献   

14.
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the SR protein family, direct the ATP-independent formation of the early (E) complex that commits the pre-mRNA to splicing. We report here the observation in U2AF-depleted HeLa nuclear extract of a distinct, ATP-independent complex designated E' which can be chased into E complex and itself commits a pre-mRNA to the splicing pathway. The E' complex is characterized by a U1 snRNA-5' splice site base pairing, which follows the actual commitment step, an interaction of SF1 with the branch region, and a close association of the 5' splice site with the branch region. These results demonstrate that both commitment to splicing and the early proximity of conserved sequences within pre-mRNA substrates can occur in a minimal complex lacking U2AF, which may function as a precursor to E complex in spliceosome assembly.  相似文献   

15.
Huang T  Vilardell J  Query CC 《The EMBO journal》2002,21(20):5516-5526
We have initiated a biochemical analysis of splicing complexes in extracts from the fission yeast Schizosaccharomyces pombe. Extracts of S.pombe contain high levels of the spliceosome-like U2/5/6 tri-snRNP, which dissociates into mono-snRNPs in the presence of ATP, and supports binding of U2 snRNP to the 3' end of introns, yielding a weak ATP-independent E complex and the stable ATP-dependent complex A. The requirements for S.pombe complex A formation (pre-mRNA sequence elements, protein splicing factors, SF1/BBP and both subunits of U2AF) are analogous to those of mammalian complex A. The S.pombe SF1/BBP, U2AF(59) and U2AF(23) are tightly associated in a novel complex that is required for complex A formation. This pre-formed SF1- U2AF(59)-U2AF(23) complex may represent a streamlined mechanism for recognition of the branch site, pyrimidine tract and 3' splice site at the 3' end of introns.  相似文献   

16.
Prp8 protein: at the heart of the spliceosome   总被引:6,自引:2,他引:4       下载免费PDF全文
  相似文献   

17.
J C Rain  P Legrain 《The EMBO journal》1997,16(7):1759-1771
Pre-mRNA splicing is a stepwise nuclear process involving intron recognition and the assembly of the spliceosome followed by intron excision. We previously developed a pre-mRNA export assay that allows the discrimination between early steps of spliceosome formation and splicing per se. Here we present evidence that these two assays detect different biochemical defects for point mutations. Mutations at the 5' splice site lead to pre-mRNA export, whereas 3' splice site mutations do not. A genetic screen applied to mutants in the branch site region shows that all positions in the conserved TACTAAC sequence are important for intron recognition. An exhaustive analysis of pre-mRNA export and splicing defects of these mutants shows that the in vivo recognition of the branch site region does not involve the base pairing of U2 snRNA with the pre-mRNA. In addition, the nucleotide preceding the conserved TACTAAC sequence contributes to the recognition process. We show that a T residue at this position allows for optimal intron recognition and that in natural introns, this nucleotide is also used preferentially. Moreover, the Mud2 protein is involved in the recognition of this nucleotide, thus establishing a role for this factor in the in vivo splicing pathway.  相似文献   

18.
The adenovirus late region 1 (L1) represents an example of an alternatively spliced gene where one 5' splice site is spliced to two alternative 3' splice sites, to produce two mRNAs; the 52,55K and IIIa mRNAs, respectively. Accumulation of the L1 mRNAs is temporally regulated during the infectious cycle. Thus, the proximal 3' splice site (52,55K mRNA) is used at all times during the infectious cycle whereas the distal 3' splice site (IIIa mRNA) is used exclusively late in infection. Here we show that in vitro splicing extracts prepared from late adenovirus-infected cells reproduces the virus-induced temporal shift from proximal to distal 3' splice site selection in L1 pre-mRNA splicing. Two stable intermediates in spliceosome assembly have been identified; the commitment complex and the pre-spliceosome (or A complex). We show that the transition in splice site activity in L1 alternative splicing results from an increase in the efficiency of commitment complex formation using the distal 3' splice site in extracts prepared from late virus-infected cells combined with a reduction of the efficiency of proximal 3' splice site splicing. The increase in commitment activity on the distal 3' splice site is paralleled by a virus-induced increase in A complex formation on the distal 3' splice site. Importantly, the virus-induced shift from proximal to distal L1 3' splice site usage does not require cis competition between the 52,55K and the IIIa 3' splice sites, but rather results from the intrinsic property of the two 3' splice sites which make them respond differently to factors in extracts prepared from virus-infected cells.  相似文献   

19.
The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing. Remarkably, only the final 53 amino acids of Rcp10p are essential. p17 is shown to be composed of two accessory splicing factors, Bud31p and Ist3p, the latter of which independently associates with the RES complex implicated in the nuclear pre-mRNA retention. A directed two-hybrid screen reveals a network of prospective interactions that includes previously unreported intra-SF3b contacts and SF3b interactions with the RES subunit Bud13p, the Prp5p DExD/H-box protein, Mud2p, and the late-acting nineteen complex. These data establish the concordance of yeast and mammalian SF3b complexes, implicate accessory splicing factors in U2 snRNP function, and support SF3b contribution from early pre-mRNP recognition to late steps in splicing.  相似文献   

20.
Antisense oligonucleotides made of 2'-OMe RNA are shown to bind specifically and efficiently to targeted sites on pre-mRNA substrates, allowing affinity selection of splicing complexes using streptavidin/biotin chromatography. The position of probe binding to the pre-mRNA influences which type of splicing complex can be selected. The accessibility of pre-mRNA sequences to antisense probes changes during the course of the splicing reaction. U1, U2, U4, U5 and U6 snRNAs are all detected in affinity-selected mammalian splicing complexes. However, antisense oligonucleotides targeted to snRNAs can block the binding of specific snRNPs to pre-mRNA. Quantitative affinity selection analyses show that only a small fraction of snRNPs in a HeLa nuclear splicing extract participate in spliceosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号