首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Herein, we describe the synthesis and resulting activity of a complex series of α-aminophosphonate diaryl esters as irreversible human neutrophil elastase inhibitors and their selectivity preference for human neutrophil elastase over several other serine proteases such as porcine pancreatic elastase, trypsin, and chymotrypsin. We synthesized and examined the inhibitory potency of several new simple Cbz-protected α-aminoalkylphosphonate diaryl esters that yielded several new HNE inhibitors, where one of the obtained compounds Cbz-ValP(OC6H4-4-COOMe)2 displayed an apparent second-order inhibition value at 33,015 M−1 s−1.  相似文献   

2.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

3.
In this report, we describe the semisynthesis of two series of ursolic and betulinic acid derivatives through designed by modifications at the C-3 and C-28 positions and demonstrate their antimalarial activity against chloroquine-resistant P. falciparum (W2 strain). Structural modifications at C-3 were more advantageous to antimalarial activity than simultaneous modifications at C-3 and C-28 positions. The ester derivative, 3β-butanoyl betulinic acid (7b), was the most active compound (IC50?=?3.4?µM) and it did not exhibit cytotoxicity against VERO nor HepG2 cells (CC50?>?400?µM), showing selectivity towards parasites (selectivity index?>?117.47). In combination with artemisinin, compound 7b showed an additive effect (CI?=?1.14). While docking analysis showed a possible interaction of 7b with the Plasmodium protease PfSUB1, with an optimum binding affinity of ?7.02?kcal/mol, the rather low inhibition displayed on a Bacillus licheniformis subtilisin A protease activity assay (IC50?=?93?µM) and the observed accumulation of ring forms together with a delay of appearance of trophozoites in vitro suggests that the main target of 3β-butanoyl betulinic acid on Plasmodium may be related to other molecules and processes pertaining to the ring stage. Therefore, compound 7b is the most promising compound for further studies on antimalarial chemotherapy. The results obtained in this study provide suitable information about scaffolds to develop novel antimalarials from natural sources.  相似文献   

4.
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of insulin signaling, is considered as a promising and validated therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. Upon careful study, a series of 2-ethoxy-4-(methoxymethyl)benzamide and 2-ethoxy-5-(methoxymethyl)benzamide analogs designed by the “bioisosteric principle” were discovered, wherein their PTP1B inhibitory potency, type of PTP1B inhibition, selectivity and membrane permeability were evaluated. Among them, compound 10m exhibited high inhibitory activity (IC50 = 0.07 μM), significant selectivity (32-fold) over T-cell PTPase (TCPTP) as well as good membrane permeability (Papp = 2.41 × 10−6 cm/s). Further studies on cell viability and cellular activity revealed that compound 10m could enhance insulin-stimulated glucose uptake with no significant cytotoxicity.  相似文献   

5.
Two series of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups were identified as competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors. Among the compounds studied, IIIv was found to have the best in vitro inhibition activity against PTP1B (IC50?=?0.67?±?0.09?µM) and the best selectivity (9-fold) between PTP1B and T-cell protein tyrosine phosphatase (TCPTP). Molecular docking studies demonstrated that compounds IIIm, IIIv and IVg could occupy simultaneously at both the catalytic site and the adjacent pTyr binding site. These results provide novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

6.
PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.  相似文献   

7.
Two new compounds, lasdiplactone (1) and lasdiploic acid (2) and one known compound 3 were isolated from the chloroform extract of cell free filtrate of the endophytic fungus Lasiosdiplodia pseudotheobromae. The structures of new compounds were determined by interplay of spectral techniques (IR, mass, 1H NMR, 13C NMR, DEPT, and 2D NMR). The absolute configuration at C-4 position of 1 was established as S using a process similar to modified Mosher’s method. The absolute configuration of 2 was established by comparing its ECD spectrum with the calculated ECD spectra of all possible isomers. In the in vitro XO inhibition assay, the highest inhibition was exhibited by 3 with an IC50 of 0.38 ± 0.13 μg/ml, followed by 2 with an IC50 of 0.41 ± 0.1 μg/ml and the least in 1. The oxidized form of 1 also showed high XO inhibition with IC50 of 0.35 ± 0.13 μg/ml.  相似文献   

8.
The objective of this work was to obtain and evaluate anti-inflammatory in vitro, in vivo and in silico potential of novel indole-N-acylhydrazone derivatives. In total, 10 new compounds (3aj) were synthesized in satisfactory yields, through a condensation reaction in a single synthesis step. In the lymphoproliferation assay, using mice splenocytes, 3a and 3b showed inhibition of lymphocyte proliferation of 62.7% (±3.5) and 50.7% (±2), respectively, while dexamethasone presented an inhibition of 74.6% (±2.4). Moreover, compound 3b induced higher Th2 cytokines production in mice splenocytes cultures. The results for COX inhibition assays showed that compound 3b is a selective COX-2 inhibitor, but with less potency when compared to celecoxib, and compound 3a not presented selectivity towards COX-2. The molecular docking results suggest compounds 3a and 3b interact with the active site of COX-2 in similar conformations, but not with the active site of COX-1, and this may be the main reason to the COX-2 selectivity of compound 3b. In vivo carrageenan-induced paw edema assays were adopted for the confirmation of the anti-inflammatory activity. Compound 3b showed better results in suppressing edema at all tested concentrations and was able to induce an edema inhibition of 100% after 5?h of carrageenan injection at the 30?mg?kg?1 dosage, corroborating with the COX inhibition and lymphoproliferation results. I addition to our experimental results, in silico analysis suggest that compounds 3a and 3b present a well-balanced profile between pharmacodynamics and pharmacokinetics. Thus, our preliminary results revealed the potentiality of a new COX-2 selective derivative in the modulation of the inflammatory process.  相似文献   

9.
A series of substituted tricyclic 4,4-dimethyl-3,4-dihydrochromeno[3,4-d]imidazole derivatives have been synthesized and their mPGES-1 biological activity has been disclosed in detail. Structure-activity relationship (SAR) optimization provided inhibitors with excellent mPGES-1 potency and low to moderate PGE2 release A549 cell potency. Among the mPGES-1 inhibitors studied, 7, 9 and 11l provided excellent selectivity over COX-2 (>200-fold) and >70-fold selectivity for COX-1 except 11l, which exhibited dual mPGES-1/COX-1 activity. Furthermore, the above tested mPGES-1 inhibitors demonstrated good metabolic stability in liver microsomes, high plasma protein binding (PPB) and no significant inhibition observed in clinically relevant CYP isoforms. Besides, selected mPGES-1 tool compounds 9 and 11l provided good in vivo pharmacokinetic profile and oral bioavailability (%F = 33 and 85). Additionally, the representative mPGES-1 tool compounds 9 and 11l revealed moderate in vivo efficacy in the LPS-induced thermal hyperalgesia guinea pig pain model.  相似文献   

10.
In the course of an investigation of human neutrophil elastase (HNE) associated with inflammation, the extract of the flower parts of Hypericum ascyron showed a significant influence to HNE. The responsible metabolites to HNE inhibition were found to be eight polyprenylated acylphloroglucinols, PPAPs (18) which showed IC50 ranges between 2.4 and 19.9 μM. This is the first report to demonstrate that PPAP skeleton exhibits potent HNE inhibition. The compounds 13 were characterized and newly named as ascyronone E (IC50 = 4.3 μM), ascyronone F (IC50 = 19.9 μM), ascyronone G (IC50 = 4.5 μM) based on 2D-NMR spectroscopic data. In the kinetic analysis of double reciprocal plots, all the compounds showed noncompetitive behaviors to HNE enzyme with the remaining of Km and the increase of Vmax. The binding affinity levels (KSV) by using fluorescence were sufficient to be able to prove that PPAPs (18) had compliant interaction with inhibitory potencies.  相似文献   

11.
The structure–activity and structure–kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11 Å channel leading to the Zn2+ catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications.  相似文献   

12.
The effects of variations in cell density on the expression of the plasminogen activator activity of a tumorigenic rat cell line were analyzed. At low cell densities, the plasminogen activator activity per cell was high and independent of cell density. As the cell density increased, the plasminogen activator activity per cell decreased until it eventually became inversely proportional to cell density. Inhibition of the plasminogen activator activity per cell by increases in cell density was not the result of the presence of a soluble inhibitor but seemed to require cell-to-cell contact. The Vmax per cell for the activation of plasminogen changed at high cell densities, but the Km did not change. This change in the Vmax per cell was in part the result of a change in the catalytic rate constant for the conversion of plasminogen to plasmin. This was inferred from studies on the kinetics of inhibition of plasminogen activator activity by diisopropyl fluorophosphate as a function of cell density. For cells growing at high densities, the rate of inhibition was constant, exhibiting a second-order rate constant of 2.6 × 10−2M−1 s−1. For cells growing at low densities, the plasminogen activator activity was inhibited at two different rates, one exhibiting a second-order rate constant of 2.6 × 10−2M−1 s−1 and the other exhibiting a second-order rate constant of 9.4 × 10−2M−1 s−1. We discuss the importance of cell density in assays of the plasminogen activator activity of cells, the use of this cell line to study the biochemical basis of the density dependence of plasminogen activator activity, and the density-dependent role of plasminogen activator activity in tumor formation and metastasis.  相似文献   

13.
Trimellitimides 621 were prepared and investigated in vivo for anti-inflammatory and ulcerogenic effects and in vitro for cytotoxicity. They were subjected to in vitro cyclooxygenase (COX-1/2) and carbonic anhydrase inhibition protocols. Compounds 611 and 18 exhibited anti-inflammatory activities and had median effective doses (ED50) of 34.3–49.8 mg kg−1 and 63.6–86.6% edema inhibition relative to the reference drug celecoxib (ED50: 33.9 mg kg−1 and 85.2% edema inhibition). Compounds 611 and 18 were weakly cytotoxic at 10 μM against 59 cell lines compared with the reference standard 5-fluorouracil (5-FU). Compounds 611 had optimal selectivity against COX-2. The selectivity index (SI) range was >200–490 and was comparable to that for celecoxib [COX-2 (SI) > 416.7]. In contrast, compounds 12, 13, and 1618 were nonselective COX inhibitors with a selectivity index range of 0.92–0.25. The carbonic anhydrase inhibition assay showed that sulfonamide incorporating trimellitimides 611 inhibited the cytosolic isoforms hCA I and hCA II, and tumor-associated isoform hCA IX. They were relatively more susceptible to inhibition by compounds 8, 9, and 11. The KI ranges were 54.1–81.9 nM for hCA I, 25.9–55.1 nM for hCA II, and 46.0–348.3 nM for hCA IX. © 2018 Elsevier Science. All rights reserved.  相似文献   

14.
Modifications at C6 and C7 positions of 3-cyanoquinolines 6 and 7 led to potent inhibitors of the ErbB family of kinases particularly against EGFRWT and Her4 enzymes in the radioisotope filter binding assay. The lead (4, SAB402) displayed potent dual biochemical activities with EGFRWT/Her4 IC50 ratio of 80 due to its potent inhibition of Her4 activity (IC50 0.03 nM), however, the selectivity towards activating mutations (EGFRL858R, EGFRex19del) was decreased. Inhibitor 4 also exhibited excellent growth inhibition in seven different cancer types and reduced cell viability in female NMRI nude mice in the intraperitoneally implanted hollow fibers which have been loaded with MOLT-4 (leukemia) and NCI-H460 (NSCLC) cells in a statistically significant manner.  相似文献   

15.
Four novel 4-(1H-imidazo[4,5-f]-1,10-phenanthrolin-2-yl)phenol derivatives 14 have been synthesized, and their G-quadruplex DNA-binding interactions, telomerase inhibition, antiproliferative activity, cell cycle arrest, and apoptotic induction were studied. All compounds show the preferential h-telo, c-myc, and c-kit2 G-quadruplex binding affinity and the G-quadruplex versus duplex selectivity. In the case of the same G-quadruplex target, the compound 1 exhibits better stabilization effect (ΔTm) than the other three compounds and also gives 80.2% inhibition of telomerase activity at 7.5 μM. All compounds can promote selectively the formation of parallel G-quadruplex structure of both c-myc and c-kit2 without addition of any cations. Four compounds display the cytotoxicity activities against HeLa and HepG2 cells by MTT assay with IC50 values of about 10?6 and 10?5 M, respectively, and cause a substantial decrease in the G2/M-phase cell population and a significant increase in the number of apoptotic cells.  相似文献   

16.
A plenty of natural products and synthetic derivatives containing quinoline moiety have been reported to possess various pharmacological activities. Quinolines such as 2-styrylquinolines and 8-hydroxyquinolines are extensively studied for their anti-HIV-1 activity and found to act mainly through HIV-1 integrase enzyme inhibition. In continuation of our efforts to search for newer anti-HIV-1 molecules, thirty-one quinoline derivatives with different linkers to ancillary phenyl ring were synthesized and evaluated for in vitro anti-HIV-1 activity using TZM-bl assays. Compound 31 showed higher activity in TZM-bl cell line against HIV-1VB59 and HIV-1UG070 cell associated virus (IC50 3.35 ± 0.87 and 2.57 ± 0.71 μM) as compared to other derivatives. Compound 31 was further tested against cell free virus HIV-1VB59 and HIV-1UG070 (IC50 1.27 ± 0.31 and 2.88 ± 1.79 μM, TI 42.20 and 18.61, respectively). This lead molecule also showed good activity in viral entry inhibition assay and cell fusion assay defining its mode of action. The activity of compound 31 was confirmed by testing against HIV-1VB51 in activated peripheral blood mononuclear cells (PBMCs). Binding interactions of 31 were compared with known entry inhibitors.  相似文献   

17.
A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays.  相似文献   

18.
In our long and broad program to explore structure–activity relationships of the natural product azepinomycin and its analogues for inhibition of guanase, an important enzyme of purine salvage pathway of nucleic acid metabolism, it became necessary to investigate if the nucleoside analogues of the heterocycle azepinomycin, which are likely to be formed in vivo, would be more or less potent than the parent heterocycle. To this end, we have resynthesized both azepinomycin (1) and its two diastereomeric nucleoside analogues (2 and 3), employing a modified, more efficient procedure, and have biochemically screened all three compounds against a mammalian guanase. Our results indicate that the natural product is at least 200 times more potent toward inhibition of guanase as compared with its nucleoside analogues, with the observed Ki of azepinomycin (1) against the rabbit liver guanase = 2.5 (±0.6) × 10?6 M, while Ki of Compound 2 = 1.19 (±0.02) × 10?4 M and that of Compound 3 = 1.29 (±0.03) × 10?4 M. It is also to be noted that while IC50 value of azepinomycin against guanase in cell culture has long been reported, no inhibition studies nor Ki against a pure mammalian enzyme have ever been documented. In addition, we have, for the first time, determined the absolute stereochemistry of the 6-OH group of 2 and 3 using conformational analysis coupled with 2-D 1H NMR NOESY  相似文献   

19.
A number of N6-substituted adenosine-5′-N-methylcarboxamides were synthesised and their pharmacology, in terms of their receptor affinity, selectivity and cardioprotective effects, were explored. The first series of compounds, 4a4f and 5a5f, showed modest receptor affinity for the A3AR with Ki values in the low to mid μM range. However, the incorporation of a 4-(2-aminoethyl)-2,6-di-tert-butylphenol group in the N6-position (in compounds 4g and 5g) significantly improved the affinity with Ki values of 30 and 9 nM, respectively. Improvements in affinity, as well as selectivity were seen when a functionalised linker was introduced. The N6-phenyl series, compounds 7a7d, demonstrated low to mid nanomolar receptor affinities (Ki = 2.3–45.0 nM), with 7b displaying 109-fold selectivity for the A3AR (vs A1). The N6-benzyl series 9a9c also proved to be potent and selective A3AR agonists and the longer chain length linker 13 was tolerated at the A3AR without abrogation of affinity or selectivity. Cardioprotection was demonstrated by a simulated ischaemia cell culture assay, whereby 7b, 7c, 9a, 9b and 9c all showed cardioprotective effects at 100 nM comparable or better than the benchmark A3AR agonist IB-MECA, but which were indistinguishable by statistical analysis. For example, compound 9c reduced cell death by 68.0 ± 3.6%.  相似文献   

20.
A number of novel naphthalimido and phthalimido vanillin derivatives were synthesised, and evaluated as antioxidants and cholinesterase inhibitors in vitro. Antioxidant activity was assessed using DPPH, FRAP, and ORAC assays. All compounds demonstrated enhanced activity compared to the parent compound, vanillin. They also exhibited BuChE selectivity in Ellman’s assay. A lead compound, 2a (2-(3-(bis(4-hydroxy-3-methoxybenzyl)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione), was identified and displayed strong antioxidant activity (IC50 of 16.67 µM in the DPPH assay, a 25-fold increase in activity compared to vanillin in the FRAP assay, and 9.43 TE in the ORAC assay). Furthermore, 2a exhibited potent BuChE selectivity, with an IC50 of 0.27 µM which was around 53-fold greater than the corresponding AChE inhibitory activity. Molecular modelling studies showed that molecules with bulkier groups, as in 2a, exhibited better BuChE selectivity. This work provides a promising basis for the development of multi-target hybrid compounds based on vanillin as potential AD therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号