首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Genomics》2020,112(5):3609-3614
The ease of programming CRISPR/Cas9 system for targeting a specific location within the genome has paved way for many clinical and industrial applications. However, its widespread use is still limited owing to its off-target effects. Though this off-target activity has been reported to be dependent on both sgRNA sequence and experimental conditions, a clear understanding of the factors imparting specificity to CRISPR/Cas9 system is important. A machine learning-based computational model has been developed for prediction of off-targets with more likelihood to be cleaved in vivo with an accuracy of 91.49%. The sequence features important for the prediction of positive off-targets were found to be accessibility, mismatches, GC-content and position-specific conservation of nucleotides. The instructions and code to generate the dataset and reproduce the analysis has been made available at http://web.iitd.ac.in/crispcut/off-targets/.  相似文献   

2.
Engineering of the CRISPR/Cas9 system has opened a plethora of new opportunities for site-directed mutagenesis and targeted genome modification. Fundamental to this is a stretch of twenty nucleotides at the 5’ end of a guide RNA that provides specificity to the bound Cas9 endonuclease. Since a sequence of twenty nucleotides can occur multiple times in a given genome and some mismatches seem to be accepted by the CRISPR/Cas9 complex, an efficient and reliable in silico selection and evaluation of the targeting site is key prerequisite for the experimental success. Here we present the CRISPR/Cas9 target online predictor (CCTop, http://crispr.cos.uni-heidelberg.de) to overcome limitations of already available tools. CCTop provides an intuitive user interface with reasonable default parameters that can easily be tuned by the user. From a given query sequence, CCTop identifies and ranks all candidate sgRNA target sites according to their off-target quality and displays full documentation. CCTop was experimentally validated for gene inactivation, non-homologous end-joining as well as homology directed repair. Thus, CCTop provides the bench biologist with a tool for the rapid and efficient identification of high quality target sites.  相似文献   

3.
Genome editing, which is an unprecedented technological breakthrough, has provided a valuable means of creating targeted mutations in plant genomes. In this study, we developed a genomic web tool to identify all gRNA target sequences in the coffee genome, along with potential off-targets. In all, 8,145,748 CRISPR guides were identified in the draft genome of Coffea canephora corresponding to 5,338,568 different sequences and, of these, 4,655,458 were single, and 514,591 were covering exons. The proof of concept was established by targeting the phytoene desaturase gene (CcPDS) using the Agrobacterium tumefaciens transformation technique and somatic embryogenesis as the plant regeneration method. An analysis of the RNA-guided genome-editing events showed that 22.8% of the regenerated plants were heterozygous mutants and 7.6% were homozygous mutants. Mutation efficiency at the target site was estimated to be 30.4%. We demonstrated that genome editing by the CRISPR/Cas9 method is an efficient and reliable way of knocking out genes of agronomic interest in the coffee tree, opening up the way for coffee molecular breeding. Our results also showed that the use of somatic embryogenesis, as the method for regenerating genome-edited plants, could restrict the choice of targeted genes to those that are not essential to the embryo development and germination steps.  相似文献   

4.

Background

As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed.

Results

We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (<?1?GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer/, respectively.

Conclusion

We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.
  相似文献   

5.
The CRISPR/Cas9 technology is useful for genome editing to generate targeted mutants. Based on this genome editing technology, it was attempted to generate the rice mutant which lacks JAZ9 activity to understand its function in stress response. The sequence of guide RNA for the recognition of target site was obtained from CRISPR-PLANT website (http://www.genome.arizona.edu/crispr) to minimize off-target effect and was recombined into the CRISPR/Cas9 binary vector pRGEB31. Embryonic calli regenerated from the mature seeds (O. sativa L. cv. Nakdong) were co-cultivated with transformed Agrobacterium tumefaciens LBA4404, and 26 individual transgenic plants were obtained through the hygromycin selection process. Nucleotide sequence analysis showed that most of T0 plants carried both edited and unedited wt sequence of JAZ9, suggesting genetic chimerism of T0 plants. Even though 2 individual lines carried homozygous mutation on JAZ9, they were also chimeric due to biallelic mutation. The relative ratio between edited and unedited wt sequence was variable among individual lines. Expression level of Cas9 is correlated with the frequency of genome editing frequency. In some plants, the enrichment ratio changed along with developmental stage. The nucleotide sequence analysis revealed that Cas9-mediated A/T addition occurred at -3 nucleotide position from protospacer adjacent motif (PAM), whereas G addition at -5 nucleotide position from the PAM. Further analysis of T1 transgenic plants showed that the genome editing patterns were similar between T0 plants and their T1 sibling plants. These suggested that earlier selection of T0 plants with homozygous mutation is an efficient way to obtain homozygous mutants in T1 generation.  相似文献   

6.
7.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

8.
韩英伦  李庆伟 《遗传》2016,38(1):9-16
基因治疗是将外源正常基因通过一定方式导入人体靶细胞以纠正或补偿因基因缺陷和异常引起的疾病,从而达到治疗目的。因此,基因治疗的技术方法在研究持续感染HIV-1或潜伏感染HIV-1原病毒患者的治疗中具有重大的现实意义。目前,现有的基因治疗方法存在识别靶向位点有限及脱靶几率大等主要问题。最新研究表明来源于细菌和古菌的规律间隔成簇短回文重复序列及其相关核酸酶9系统[Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9), CRISPR/Cas9]已被成功改造成基因组定点编辑工具。因此,如何利用CRISPR/Cas9系统实现对HIV-1病毒基因组进行高效靶向修饰,从而达到治疗HIV-1感染病患的目的已经成为当前研究的热点。本文参考最新国内外研究成果,重点介绍了 CRISPR/Cas9基因组编辑技术在HIV-1感染疾病治疗中的应用,主要包括CCR5基因编辑、清除HIV-1原病毒以及活化HIV-1原病毒,以期为HIV-1感染疾病的预防与治疗提供重要研究参考。  相似文献   

9.
Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes. Here, we reviewed the recent progress in B. subtilis gene editing using CRISPR/Cas9 based tools, and highlighted state-of-the-art strategies for design of CRISPR/Cas9 system. Finally, future perspectives on the use of CRISPR/Cas9 genome engineering for sequence-specific genome editing in B. subtilis are provided.  相似文献   

10.
11.
Dutta  Shayoni  Madan  Spandan  Sundar  Durai 《BMC genomics》2016,17(13):1037-125
Background

Engineering zinc finger protein motifs for specific binding to double-stranded DNA is critical for targeted genome editing. Most existing tools for predicting DNA-binding specificity in zinc fingers are trained on data obtained from naturally occurring proteins, thereby skewing the predictions. Moreover, these mostly neglect the cooperativity exhibited by zinc fingers.

Methods

Here, we present an ab-initio method that is based on mutation of the key α-helical residues of individual fingers of the parent template for Zif-268 and its consensus sequence (PDB ID: 1AAY). In an attempt to elucidate the mechanism of zinc finger protein-DNA interactions, we evaluated and compared three approaches, differing in the amino acid mutations introduced in the Zif-268 parent template, and the mode of binding they try to mimic, i.e., modular and synergistic mode of binding.

Results

Comparative evaluation of the three strategies reveals that the synergistic mode of binding appears to mimic the ideal mechanism of DNA-zinc finger protein binding. Analysis of the predictions made by all three strategies indicate strong dependence of zinc finger binding specificity on the amino acid propensity and the position of a 3-bp DNA sub-site in the target DNA sequence. Moreover, the binding affinity of the individual zinc fingers was found to increase in the order Finger 1 < Finger 2 < Finger 3, thus confirming the cooperative effect.

Conclusions

Our analysis offers novel insights into the prediction of ZFPs for target DNA sequences and the approaches have been made available as an easy to use web server at http://web.iitd.ac.in/~sundar/zifpredict_ihbe

  相似文献   

12.
The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites.  相似文献   

13.
Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRV- mediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes.  相似文献   

14.

Objectives

To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins.

Results

To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations.

Conclusions

We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.
  相似文献   

15.
Dutta  Shayoni  Madan  Spandan  Parikh  Harsh  Sundar  Durai 《BMC genomics》2016,17(13):1033-107

Background

The ability to engineer zinc finger proteins binding to a DNA sequence of choice is essential for targeted genome editing to be possible. Experimental techniques and molecular docking have been successful in predicting protein-DNA interactions, however, they are highly time and resource intensive. Here, we present a novel algorithm designed for high throughput prediction of optimal zinc finger protein for 9 bp DNA sequences of choice. In accordance with the principles of information theory, a subset identified by using K-means clustering was used as a representative for the space of all possible 9 bp DNA sequences. The modeling and simulation results assuming synergistic mode of binding obtained from this subset were used to train an ensemble micro neural network. Synergistic mode of binding is the closest to the DNA-protein binding seen in nature, and gives much higher quality predictions, while the time and resources increase exponentially in the trade off. Our algorithm is inspired from an ensemble machine learning approach, and incorporates the predictions made by 100 parallel neural networks, each with a different hidden layer architecture designed to pick up different features from the training dataset to predict optimal zinc finger proteins for any 9 bp target DNA.

Results

The model gave an accuracy of an average 83% sequence identity for the testing dataset. The BLAST e-value are well within the statistical confidence interval of E-05 for 100% of the testing samples. The geometric mean and median value for the BLAST e-values were found to be 1.70E-12 and 7.00E-12 respectively. For final validation of approach, we compared our predictions against optimal ZFPs reported in literature for a set of experimentally studied DNA sequences. The accuracy, as measured by the average string identity between our predictions and the optimal zinc finger protein reported in literature for a 9 bp DNA target was found to be as high as 81% for DNA targets with a consensus sequence GCNGNNGCN reported in literature. Moreover, the average string identity of our predictions for a catalogue of over 100 9 bp DNA for which the optimal zinc finger protein has been reported in literature was found to be 71%.

Conclusions

Validation with experimental data shows that our tool is capable of domain adaptation and thus scales well to datasets other than the training set with high accuracy. As synergistic binding comes the closest to the ideal mode of binding, our algorithm predicts biologically relevant results in sync with the experimental data present in the literature. While there have been disjointed attempts to approach this problem synergistically reported in literature, there is no work covering the whole sample space. Our algorithm allows designing zinc finger proteins for DNA targets of the user’s choice, opening up new frontiers in the field of targeted genome editing. This algorithm is also available as an easy to use web server, ZifNN, at http://web.iitd.ac.in/~sundar/ZifNN/.
  相似文献   

16.
基于CRISPR/Cas9系统的基因组编辑技术已成为基因功能研究和遗传修饰的重要工具。在引导RNA的引导下,Cas9蛋白对基因组靶位点进行精准切割产生DNA双链断裂(DSB),借助细胞内的DSB修复机制,可实现基因组靶位点碱基的缺失、插入或者替换,甚至发生片段删除。该文介绍了基于CRISPR/Cas9基因组编辑系统的D...  相似文献   

17.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

18.
CRISPR/Cas9 genome editing in wheat   总被引:1,自引:0,他引:1  
  相似文献   

19.
Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号