首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Methionine sulfoxide reductase A is an essential enzyme in the antioxidant system which scavenges reactive oxygen species through cyclic oxidation and reduction of methionine and methionine sulfoxide. The cytosolic form of the enzyme is myristoylated, but it is not known to translocate to membranes, and the function of myristoylation is not established. We compared the biochemical and biophysical properties of myristoylated and nonmyristoylated mouse methionine sulfoxide reductase A. These were almost identical for both forms of the enzyme, except that the myristoylated form reduced methionine sulfoxide in protein much faster than the nonmyristoylated form. We determined the solution structure of the myristoylated protein and found that the myristoyl group lies in a relatively surface exposed "myristoyl nest." We propose that this structure functions to enhance protein-protein interaction.  相似文献   

3.
4.
We investigated acute and chronic effects administration of methionine (Met) and/or methionine sulfoxide (MetO) on ectonucleotidases and oxidative stress in platelets and serum of young rats. Wistar rats were divided into four groups: control, Met, MetO, and Met + MetO. In acute treatment, the animals received a single subcutaneous injection of amino acid(s) and were euthanized after 1 and 3 hours. In chronic protocol, Met and/or MetO were administered twice a day with an 8-hour interval from the 6th to the 28th day of life. Nucleoside triphosphate phosphohydrolase and 5′-nucleotidase activities were reduced in platelets and serum by Met, MetO, and Met + MetO after 3 hours and 21 days. Adenosine deaminase activity reduced in platelets at 3 hours after MetO and Met + MetO administration and increased after 21 days in animals treated with Met + MetO. Superoxide dismutase and catalase activities decreased in platelets in MetO and Met + MetO groups after 3 hours, while reactive oxygen species (ROS) levels increased in same groups. Catalase activity in platelets decreased in all experimental groups after chronic treatment. Met, MetO, and Met + MetO administration increased plasmatic ROS levels in acute and chronic protocols; glutathione S-transferase activity increased by MetO and Met + MetO administration at 3 hours, and ascorbic acid decreased in all experimental groups in acute and chronic protocols. Thiobarbituric acid reactive substances increased, superoxide dismutase and catalase activities reduced in the Met and/or MetO groups at 3 hours and in chronic treatment. Our data demonstrated that Met and/or MetO induced changes in adenine nucleotide hydrolysis and redox status of platelets and serum, which can be associated with platelet dysfunction in hypermethioninemia.  相似文献   

5.
Methionine sulfoxide reductase A (MSRA) protects proteins from oxidation, and also helps remove reactive oxygen species (ROS) by recovering antioxidant enzymes inactivated by oxidation. Although its functions have been investigated extensively, little is known about the mechanism by which MSRA is regulated. Arrest defective 1 (ARD1) is an enzyme that catalyzes not only N-terminal acetylation as a cotranslational modification but also lysine acetylation as a posttranslational modification. ARD1, which is expressed in most cell types, is believed to participate in diverse biological processes, but its roles are poorly understood. Given that MSRA was hunted in a yeast two-hybrid screen with ARD1 as the bait, we here investigated whether ARD1 is a novel regulator of MSRA. ARD1 was shown to interact with and acetylate MSRA in both cells and test tubes. It specifically acetylated the K49 residue of MSRA, and by doing so repressed the enzymatic function of MSRA. ARD1 increased cellular levels of ROS, carbonylated proteins and DNA breaks under oxidative stress. Moreover, it promoted cell death induced by pro-oxidants, which was attenuated in MSRA-deficient cells. When mice were exposed to hyperoxic conditions for 2 days, their livers and kidneys were injured and protein carbonylation was increased. The oxidative tissue injury was more severe in ARD1 transgenic mice than in their wild-type littermates. In conclusion, ARD1 has a crucial role in the cellular response to oxidative stress as a bona fide regulator of MSRA. ARD1 is a potential target for ameliorating oxidative injury or for potentiating ROS-producing anticancer agents.Aerobic respiration is essential for eukaryotic life because molecular oxygen participates in ATP production and various oxidative metabolic reactions.1 When oxygen is used, reactive oxygen species (ROS) are inevitably generated and threaten life as harmful metabolites that damage macromolecules such as nucleic acids, lipids and proteins.2,3 ROS also act as second messengers that promote cell proliferation or differentiation.4, 5, 6, 7 From a functional perspective, ROS act as a double-edged sword in determining cell fate, and the roles of ROS depend on cell contexts.8 A variety of cell metabolic reactions are regulated depending on the intracellular redox state, which reflects the balance between ROS-generating oxidases and ROS-scavenging antioxidants.9 Accordingly, knowledge about the redox-balancing mechanism will help us to better understand normal physiology and pathology.The sulfur atom of methionine is easily oxidized by ROS, with methionine being modified to methionine sulfoxide (MetO), which forms two enantiomers (S-sulfoxide and R-sulfoxide).10 When proteins are sulfoxidized at methionine residues, their functions become impaired or altered.11 Therefore, MetO is not only a convincing biomarker for reflecting the extent of oxidative stress but also a pathogenic factor that contributes to oxidative stress-related diseases.12 As MetO causes serious problems in life, the defense systems against MetO have been evolutionally conserved in prokaryotic and eukaryotic cells.13 One such system, methionine sulfoxide reductase (MSR), has a crucial role in preventing the accumulation of MetO, and includes two enzymes, methionine sulfoxide reductase A (MSRA) and MSRB, which reduce S-sulfoxide and R-sulfoxide, respectively.14Arrest defective 1 (ARD1) is an enzyme that catalyzes N-terminal acetylation of nascent peptides as a cotranslational modification and lysine acetylation as a posttranslational modification.15 In yeast and mammalian cells, ARD1 is known to have essential roles in cell growth and differentiation.16,17 ARD1 has also been reported to control cell migration by acetylating myosin light chain kinase18 and to promote cancer growth by acetylating β-catenin or the androgen receptor.19 Considering that ARD1 is widely expressed in most mammalian cells,20 it is expected that ARD1 has diverse functions beyond those mentioned above. To further understand the functions of ARD1, we sought novel targets of ARD1 using the yeast two-hybrid method and identified MSRA as an ARD1-interacting molecule. Furthermore, we tested the possibility that ARD1 determines cell fate under oxidative stress by regulating MSRA. This study may provide new insights into how MSRA is regulated and identifies ARD1 as a potential target for modulating the cellular response to oxidative stress.  相似文献   

6.
Peptide methionine sulfoxide reductase (MsrA) repairs oxidative damage to methionine residues arising from reactive oxygen species and reactive nitrogen intermediates. MsrA activity is found in a wide variety of organisms, and it is implicated as one of the primary defenses against oxidative stress. Disruption of the gene encoding MsrA in several pathogenic bacteria responsible for infections in humans results in the loss of their ability to colonize host cells. Here, we present the X-ray crystal structure of MsrA from the pathogenic bacterium Mycobacterium tuberculosis refined to 1.5 A resolution. In contrast to the three catalytic cysteine residues found in previously characterized MsrA structures, M. tuberculosis MsrA represents a class containing only two functional cysteine residues. The structure reveals a methionine residue of one MsrA molecule bound at the active site of a neighboring molecule in the crystal lattice and thus serves as an excellent model for protein-bound methionine sulfoxide recognition and repair.  相似文献   

7.
Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE−/−) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE−/− mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE−/− mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases.  相似文献   

8.
Adiponectin is an adipocyte-derived collectin that acts on a wide range of tissues including liver, brain, heart, and vascular endothelium. To date, little is known about the actions of adiponectin in the lung. Herein, we demonstrate that adiponectin is present in lung lining fluid and that adiponectin deficiency leads to increases in proinflammatory mediators and an emphysema-like phenotype in the mouse lung. Alveolar macrophages from adiponectin-deficient mice spontaneously display increased production of tumor necrosis factor-alpha (TNF-alpha) and matrix metalloproteinase (MMP-12) activity. Consistent with these observations, we found that pretreatment of alveolar macrophages with adiponectin leads to TNF-alpha and MMP-12 suppression. Together, our findings show that adiponectin leads to macrophage suppression in the lung and suggest that adiponectin-deficient states may contribute to the pathogenesis of inflammatory lung conditions such as emphysema.  相似文献   

9.
Methionine sulfoxide reductases (Msrs) are ubiquitous enzymes that catalyze the thioredoxin-dependent reduction of methionine sulfoxide (MetSO) back to methionine. In vivo, Msrs are essential in protecting cells against oxidative damages on proteins and in the virulence of some bacteria. There exists two structurally unrelated classes of Msrs. MsrAs are stereo-specific toward the S epimer on the sulfur of the sulfoxide, whereas MsrBs are specific toward the R isomer. Both classes of Msrs display a similar catalytic mechanism of sulfoxide reduction by thiols via the sulfenic acid chemistry and a better affinity for protein-bound MetSO than for free MetSO. Recently, the role of the amino acids implicated in the catalysis of the reductase step of Neisseria meningitidis MsrA was determined. In the present study, the invariant amino acids potentially involved in substrate binding, i.e. Phe-52, Trp-53, Asp-129, His-186, Tyr-189, and Tyr-197, were substituted. The catalytic parameters under steady-state conditions and of the reductase step of the mutated MsrAs were determined and compared with those of the wild type. Altogether, the results support the presence of at least two binding subsites. The first one, whose contribution is major in the efficiency of the reductase step and in which the epsilon-methyl group of MetSO binds, is the hydrophobic pocket formed by Phe-52 and Trp-53, the position of the indole ring being stabilized by interactions with His-186 and Tyr-189. The second subsite composed of Asp-129 and Tyr-197 contributes to the binding of the main chain of the substrate but to a lesser extent.  相似文献   

10.
Glutathione peroxidase (Gpx) is one of the most important anti-oxidant enzymes in yeast. Gpx3 is a ubiquitously expressed isoform that modulates the activities of redox-sensitive thiol proteins, particularly those involved in signal transduction pathways and protein translocation. In order to search for the interaction partners of Gpx3, we carried out immunoprecipitation/2-dimensional gel electrophoresis (IP-2DE), MALDI-TOF mass spectrometry, and a pull down assay. We found that Mxr1, a peptide methionine sulfoxide reductase, interacts with Gpx3. By reducing methionine sulfoxide to methionine, Mxr1 reverses the inactivation of proteins caused by the oxidation of critical methionine residues. Gpx3 can interact with Mxr1 through the formation of an intermolecular disulfide bond. When oxidative stress is induced by H(2)O(2), this interaction is compromised and the free Mxr1 then repairs the oxidized proteins. Our findings imply that this interaction links redox sensing machinery of Gpx3 to protein repair activity of Mxr1. Based on these results, we propose that Gpx3 functions as a redox-dependent exquisite regulator of the protein repair activity of Mxr1.  相似文献   

11.
Methionine sulfoxide is transported into purified intestinal and renal brush border membrane vesicles from rabbit by an Na+-dependent mechanism and is accumulated inside the vesicles against the concentration gradient. Both in intestine and kidney, the rate of transport is enhanced with increasing concentrations of Na+ in the external medium. Increasing the Na+ gradient reduces the apparent Kt for methionine sulfoxide without causing any change in Vmax. With an outward K+ gradient (vesicle > medium), valinomycin stimulates the Na+-gradient-dependent transport of methionine sulfoxide in the kidney, showing the electrogenicity of the transport process. A number of amino acids inhibit methionine sulfoxide transport in both the intestine and kidney. An enzymatic activity capable of reducing methionine sulfoxide to methionine is present in the intestinal mucosa, renal cortex and liver. The activity is highest in renal cortex and lowest in intestine. The methionine sulfoxide-reducing activity is stimulated by NADH, NADPH, glutathione and dithiothreitol and the potency of the stimulation is in the order: dithiothreitol > NADPH > glutathione > NADH.  相似文献   

12.
Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice   总被引:1,自引:0,他引:1  
Mirza R  Koh TJ 《Cytokine》2011,56(2):256-264
The hypothesis of this study was that cells of the monocyte/macrophage lineage (Mo/Mp) exhibit an impaired transition from pro-inflammatory to pro-healing phenotypes in wounds of diabetic mice, which contributes to deficient healing. Mo/Mp isolated from excisional wounds in non-diabetic db/+ mice exhibited a pro-inflammatory phenotype on day 5 post-injury, with high level expression of the pro-inflammatory molecules interleukin-1β, matrix metalloprotease-9 and inducible nitric oxide synthase. Wound Mo/Mp exhibited a less inflammatory phenotype on day 10 post-injury, with decreased expression of the pro-inflammatory molecules and increased expression of the alternative activation markers CD206 and CD36. In contrast, in db/db mice, the pro-inflammatory phenotype persisted through day 10 post-injury and was associated with reduced expression of insulin-like growth factor-1, transforming growth factor-β1 and vascular endothelial growth factor. Reduced levels of these growth factors in wounds of db/db mice may have contributed to impaired wound closure, reduced granulation tissue formation, angiogenesis and collagen deposition. The persistent pro-inflammatory wound Mo/Mp phenotype in db/db mice may have resulted from elevated levels of pro-inflammatory interleukin-1β and interferon-γ and reduced levels of anti-inflammatory interleukin-10 in the wound environment. Our findings are consistent with the hypothesis that dysregulation of Mo/Mp phenotypes contributes to impaired healing of diabetic wounds.  相似文献   

13.
Two types of methionine (Met) sulfoxide reductases (Msr) catalyze the reduction of Met sulfoxide (MetSO) back to Met. MsrA, well characterized in plants, exhibits an activity restricted to the Met-S-SO-enantiomer. Recently, a new type of Msr enzyme, called MsrB, has been identified in various organisms and shown to catalytically reduce the R-enantiomer of MetSO. In plants, very little information is available about MsrB and we focused our attention on Arabidopsis (Arabidopsis thaliana) MsrB proteins. Searching Arabidopsis genome databases, we have identified nine open reading frames encoding proteins closely related to MsrB proteins from bacteria and animal cells. We then analyzed the activity and abundance of the two chloroplastic MsrB proteins, MsrB1 and MsrB2. Both enzymes exhibit an absolute R-stereospecificity for MetSO and a higher catalytic efficiency when using protein-bound MetSO as a substrate than when using free MetSO. Interestingly, we observed that MsrB2 is reduced by thioredoxin, whereas MsrB1 is not. This feature of MsrB1 could result from the lack of the catalytical cysteine (Cys) corresponding to Cys-63 in Escherichia coli MsrB that is involved in the regeneration of Cys-117 through the formation of an intramolecular disulfide bridge followed by thioredoxin reduction. We investigated the abundance of plastidial MsrA and B in response to abiotic (water stress, photooxidative treatment) and biotic (rust fungus) stresses and we observed that MsrA and B protein levels increase in response to the photooxidative treatment. The possible role of plastidic MsrB in the tolerance to oxidative damage is discussed.  相似文献   

14.
Methionine sulfoxide is an oxidation product of methionine with reactive oxygen species via 2-electron-dependent mechanism. Such oxidants can be generated from activated neutrophils; therefore, methionine sulfoxide can be regarded as a biomarker of oxidative stress in vivo. We describe here a method for the simultaneous determination of methionine sulfoxide and methionine in blood plasma using gas chromatography-mass spectrometry with isotopically labeled compounds as internal standards. This method comprises the inclusion of [Me-13C, Me-2H(3)]methionine sulfoxide and [Me-13C, Me-2H(3)]methionine into plasma, the removal of plasma proteins using acetonitrile, the purification of amino acids with cation-exchange chromatography, and the derivatization of methionine sulfoxide and methionine to their corresponding tert-butyldimethylsilyl derivatives using N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide. Quantitation was performed by electron impact mode. The levels of methionine sulfoxide in healthy human blood plasma were 4.0 +/- 1.0 microM (means +/- SD, n = 8), indicating that approximately 10% of methionine is detected as the oxidized form in healthy human plasma. The ratio of methionine sulfoxide in total methionine increased with treatment of human blood with phorbol 12-myristate 13-acetate, while this ratio remained constant in plasma from alloxan-induced hyperglycemic rabbits. These results indicate that this method is applicable for plasma samples and methionine sulfoxide can represent oxidative stress caused by nonradical oxidation in vivo.  相似文献   

15.
PILB has been described as being involved in the virulence of bacteria of Neisseria genus. The PILB protein is composed of three subdomains. In the present study, the central subdomain (PILB-MsrA), the C terminus subdomain (PILB-MsrB), and the fused subdomain (PILB-MsrA/MsrB) of N. meningitidis were produced as folded entities. The central subdomain shows a methionine sulfoxide reductase A (MsrA) activity, whereas PILB-MsrB displays a methionine sulfoxide reductase B (MsrB) activity. The catalytic mechanism of PILB-MsrB can be divided into two steps: 1) an attack of the Cys-494 on the sulfur atom of the sulfoxide substrate, leading to formation of a sulfenic acid intermediate and release of 1 mol of methionine/mol of enzyme and 2) a regeneration of Cys-494 via formation of an intradisulfide bond with Cys-439 followed by reduction with thioredoxin. The study also shows that 1) MsrA and MsrB display opposite stereoselectivities toward the sulfoxide function; 2) the active sites of both Msrs, particularly MsrB, are rather adapted for binding protein-bound MetSO more efficiently than free MetSO; 3) the carbon Calpha is not a determining factor for efficient binding to both Msrs; and 4) the presence of the sulfoxide function is a prerequisite for binding to Msrs. The fact that the two Msrs exhibit opposite stereoselectivities argues for a structure of the active site of MsrBs different from that of MsrAs. This is further supported by the absence of sequence homology between the two Msrs in particular around the cysteine that is involved in formation of the sulfenic acid derivative. The fact that the catalytic mechanism takes place through formation of a sulfenic acid intermediate for both Msrs supports the idea that sulfenic acid chemistry is a general feature in the reduction of sulfoxides by thiols.  相似文献   

16.
Methionine sulfoxide in peptides and proteins was determined by use of 3 N p-toluenesulfonic acid as a hydrolyzing agent. Samples were hydrolyzed at 110 degrees C for 22 h in an evacuated sealed tube and analyzed for amino acid content. Amino acid analysis showed that the recovery of methionine sulfoxide from a synthetic peptide and its mixture with proteins was consistently better than 90%. The recovery of all other amino acids except tryptophan was complete, and was similar to that observed after hydrolysis with 6 N HCl. The presence of carbohydrates had no effect on the yield. Thus, the present procedure can be used for general and simultaneous determination of methionine sulfoxide as well as other amino acids in proteins.  相似文献   

17.
The cytochrome system in eggs and embryos of the sea urchin, Hemicentrotus pulcherrimus, was investigated. Difference spectra of the mitochondrial fraction demonstrated the presence of a complete cytochrome system in unfertilized eggs. Cytochrome levels and the activities of respiratory enzymes were measured in crude extracts of eggs both before and after fertilization. Unfertilized eggs contained cytochromes aa3, b, and c + c1 in a ratio of 1.0:1.8:0.7. Gastrulae contained almost the same amount of cytochromes aa3and b as unfertilized eggs. However, the amount of cytochrome c + c1 in gastrulae was 1.5 times greater than that in unfertilized eggs. The activity of cytochrome oxidase remained unchanged during development. No cytochrome oxidase inhibitor was found in unfertilized eggs. Both antimycin A-sensitive and insensitive NADH-cytochrome c reductase activities increased during development. The activity of succinate-cytochrome c reductase increased during early development, reached a temporary plateau, and then declined at the pluteus stage. These results are discussed in relation to the increase of respiration during early development.  相似文献   

18.
Methionine sulfoxide reductase plays a regulatory role in plant growth and development, especially in scavenging reactive oxygen species by restoration of the oxidation of methionine in protein. A fulllength cDNA sequence encoding methionine sulfoxide reductase (MSR) from mulberry, which we designated MMSR, was cloned based on mulberry expressed sequence tags (ESTs). Sequence analysis showed that the MMSR is 810 bp long, encoding 194 amino acids with a predicted molecular weight of 21.6 kDa and an isoelectric point of 6.78. The expression level of the MMSR gene under conditions of drought and salt stresses was quantified by qRT-PCR. The results show that the expression level changed significantly under the stress conditions compared to the normal growth environment. It helps us to get a better understanding of the molecular basis for signal transduction mechanisms underlying the stress response in mulberry.  相似文献   

19.
Or-Rashid MM  Onodera R  Wadud S 《Amino acids》2003,24(1-2):135-139
Summary.  An in vitro experiment was conducted to test the ability of mixed rumen bacteria (B), protozoa (P), and their mixture (BP) to utilize the oxidized forms of methionine (Met) e.g., methionine sulfoxide (MSO), methionine sulfone (MSO2). Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were anaerobically incubated at 39°C for 12 h with or without MSO (1 mM) or MSO2 (1 mM) as a substrate. Met and other related compounds produced in both the supernatants and hydrolyzates of the incubation were analyzed by HPLC. During 6- and 12-h incubation periods, MSO disappeared by 28.3 and 42.0%, 0.0 and 0.0%, and 40.6 and 62.4% in B, P, and BP suspensions, respectively. Rumen bacteria and the mixture of rumen bacteria and protozoa were capable to reduce MSO to Met, and the production of Met from MSO in BP (156.6 and 196.1 μmol/g MN) was about 17.3 and 14.1% higher than that in B alone (133.5 and 171.9 μmol/g MN) during 6- and 12-h incubations, respectively. On the other hand, mixed rumen protozoa were unable to utilize MSO. Other metabolites produced from MSO were found to be MSO2 and 2-aminobutyric acid (2AB) in B and BP. MSO2 as a substrate remained without diminution in all-microbial suspensions. It was concluded that B, P, and BP cannot utilize MSO2; but MSO can be utilized by B and BP for producing Met. Received December 28, 2001 Accepted May 21, 2002 Published online October 14, 2002 Acknowledgements The authors are extremely grateful to Professor H. Ogawa, the University of Tokyo, Japan and Dr. Takashi Hasegawa, Miyazaki University, Japan for inserting permanent rumen fistulae in goats. We would like to thank MONBUSHO for the award of a research scholarship to Mamun M. Or-Rashid since 1996–2001. Authors' address: Shaila Wadud, Laboratory of Animal Nutrition and Biochemistry, Division of Animal Science, Miyazaki University, Miyazaki 889-2192, Japan, Fax. +81-985-58-7201, E-mail: rafatkun@hotmail.com  相似文献   

20.
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disorder of unknown etiology. However, the definitive mechanisms remain obscure. Recently, transglutaminase 2 (TG2) was implicated in the pathogenesis of SLE. Cystamine, which inactivates TG2 activity by forming a mixed disulfide, may interfere with and inhibit other thiol-dependent enzymes such as caspases. To investigate the effects of cystamine in SLE pathogenesis, this in vivo study assessed the serum and macrophage response after administration of cystamine to NZB/W F(1) mice. The experimental results demonstrated for the first time a significant reduction in TG2 and matrix metalloproteinase (MMP)-9 activity; tissue inhibitor of metalloproteinases (TIMP)-1, TIMP-2, TG2, tumor necrosis factor alpha, and tumor growth factor beta mRNA expression; and anticardiolipin autoantibodies (aCL) in NZB/W F(1) mice following cystamine administration. It strongly suggests the therapeutic potential of cystamine in SLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号