首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete mitogenomes of Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis are 15,660 bp, 15,657 bp and 15,661 bp in size, respectively. All three mitogenomes contain a standard set of 13 protein - coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T-rich region in the same order as those of the other analysed caeliferan species, including the rearrangement of trnAsp and trnLys. The putative initiation codon for the cox1 gene in the three species is CCG. The long polythymine stretch (T-stretch) in the A + T-rich region of the three species is not adjacent to the trnIle but inside the stem–loop sequence in the majority strand. The mitogenomes of F. helanshanensis and P. rubimarginis have higher overall similarities. The characterization of the three mitogenomes will enrich our knowledge on the Pamphagidae mitogenome. The phylogenetic analyses indicated that within the Caelifera, Pyrgomorphoidea is a sister group to Acridoidea. The species from the Pamphagidae form a monophyletic group, as is the case for Acrididae. Furthermore, the two families cluster as sister groups, supporting the monophyly of Acridoidea. The relationships among eight acridid subfamilies were (Cyrtacanthacridinae + (Calliptaminae + (Catantopinae + (Oxyinae + (Melanopline + (Acridinae + (Oedipodinae + Gomphocerinae))))))).  相似文献   

2.
《Genomics》2020,112(1):289-296
Oxya is a genus of grasshoppers (Orthoptera: Acridoidea) attacking rice and other gramineous plants in Africa and Asia. In the present study, we characterized complete mitochondrial genomes (mitogenomes) of three species, Oxya japonica japonica (15,427 bp), Oxya hainanensis (15,443 bp) and Oxya agavisa robusta (15,552 bp) collected from China. The three mitogenomes contained a typical gene set of metazoan mitogenomes and shared the same gene order with other Acridid grasshoppers, including the rearrangement of tRNAAsp and tRNALys. Analyses of pairwise genetic distances showed that ATP8 was the least conserved gene, while COI the most conserved. To determine the position of Oxya grasshoppers in the phylogeny of Acrididae, we reconstructed phylogenetic trees among 64 species from across 11 subfamilies using nucleotide sequences of mitogenomes. While the tree confirms traditional classifications of Acrididae at major higher-levels, it suggests a few modifications for classifications at lower-levels.  相似文献   

3.
王乃馨  封霞  蒋国芳  方宁  轩文娟 《昆虫学报》2008,51(11):1187-1195
本研究基于Cytb 基因和COI基因的部分序列来推断17种蝗虫之间的系统发育关系。这17种蝗虫均采自国内,代表了蝗科(Acrididae)5个亚科:黑蝗亚科(Melanoplinae)、斑腿蝗亚科(Catantopinae)、刺胸蝗亚科(Cyrtacanthacridinae)、斑翅蝗亚科(Oedipodinae)和大足蝗亚科(Gomphocerinae)。采用联合序列方法进行分析,结果显示:Cytb 和COI联合序列长度为1 998 bp,其中A和T总含量为72.13%,G和C总含量为27.87%。联合序列共包含了889个保守位点,1 109个变异位点,在这些变异位点中有838个简约信息位点。系统发生树采用邻接法(NJ)、最大简约法(MP)和最大似然法(ML)进行构建。使用蜢总科的变色乌蜢Erianthus versicolor 和 Erianthus sp. 两个种作为外群。结果表明:大足蝗亚科和斑腿蝗亚科的单系性没有得到支持。斑翅蝗亚科内部各种聚成一个大支,在本研究中该亚科的单系性得到支持,与前人的研究结论相同。大足蝗亚科、斑腿蝗亚科、刺胸蝗亚科和黑蝗亚科这4科关系非常近,可以考虑将其合并为一个亚科。同时,我们发现基于Cytb和COI基因联合序列推断蝗科内各亚科间的系统发生关系并不十分可靠。  相似文献   

4.
The complete mitochondrial genome of Tonkinacris sinensis is 15,627 bp long and contains13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and one A + T-rich region. The gene order and orientation are identical to those of other Orthoptera species, containing the rearrangement of trnD and trnK. Intriguingly, a tRNASer-like gene exists on the N strand between the trnSUCN and nad1 genes. The length of this gene is 110 bp, and it has a typical clover-leaf structure, an anticodon, and a high cove score (23.49). On its clover-leaf structure, on the anticodon arm, there is a 41 bp intron with an unknown function. Here, phylogenetic analysis was conducted based on 13 PCGs of 30 species from 9 subfamilies of Acrididae to understand their phylogenetic relationships. According to the phylogenetic tree, the relationship among the 9 subfamilies within Acrididae was as follows: (Spathosterninae + (Oxyinae + (Catantopinae + (Calliptaminae + (Cyrtacanthacridinae + (Melanoplinae + (Gomphocerinae + (Oedipodinae + Acridinae)))))))).  相似文献   

5.
We described the complete mitochondrial genome (mitogenome) of the Wagner’s mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.  相似文献   

6.
Mitogenomes have been widely used for phylogenetic reconstruction of various Dipteran groups, but specifically for chironomid, they have not been carried out to resolve the relationships. Diamesinae (Diptera: Chironomidae) are important bioindicators for freshwater ecosystem monitoring, but its evolutionary history remains uncertain for lack of information. Here, coupled with one previously published and 30 new mitogenomes of Diamesinae, we carried out comparative mitogenomic analysis and phylogenetic analysis. Mitogenomes of Diamesinae were conserved in structure, and all genes arranged in the same order as the ancestral insect mitogenome. All protein‐coding genes in Diamesinae were under stronger purifying selection than those of other nonbiting midge species, which may exhibit signs of adaptation to life at cold living conditions. Phylogenetic analyses strongly supported the monophyly of Diamesinae, with Boreheptagyiini deeply nested within Diamesini. In addition, phylogenetic relationship of selected six genera was resolved, except Sympotthastia remained unstable. Our study revealed that the mitogenomes of Diamesinae are highly conserved, and they are practically useful for phylogenetic inference.  相似文献   

7.
8.
The monotypic genus Damora (Nymphalidae, Heliconiinae) contains a single species, Damora sagana, which is widely distributed across southern China. Herein, its complete mitogenome was sequenced to further understand lepidopteran mitogenome characteristics, reconstruct the nymphalid family phylogeny, and infer the subdivision of Heliconiinae species. The circular mitogenome was 15,151 bp long, abundant in A and T, and comprised of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region with a gene arrangement typical of lepidopteran mitogenomes. ATN codons initiated all PCGs, except cytochrome c oxidase subunit 1 (COX1), which was initiated by a CGA sequence as has been observed in other lepidopterans. Three PCGs (COX1, COX2 and ND4) employed a single T termination signal, whereas others had the typical complete termination codon (TAA). All tRNA genes were folded into the typical cloverleaf structure except for tRNA-Ser (AGN). The A+T-rich region included the conserved motif ‘ATAGA’ followed by a 17 bp poly-T stretch, which was also observed in tribe Argynnini mitogenomes. A phylogenetic tree was constructed via multiple methods using the 13 PCGs data of D. sagana and other available mitogenomes of nymphalid species. All three phylogenetic trees yielded the same topology. These results were consistent with those from previous studies of most major nymphalid groups, except those regarding tribe subdivision in certain subfamilies such as Argynnini + (Acraeini + Heliconiini) for Heliconiine. Furthermore, our analyses identified that the genus Cethosia was grouped with the genus Acraea composing the tribe Acraeini with strong support.  相似文献   

9.
蝗科高级阶元的分子系统发育(英文)   总被引:2,自引:0,他引:2  
迄今,蝗科内各分类阶元之间的系统发生关系大部分是未知的。本文用来自中国24种蝗科昆虫的12SrDNA和16SrDNA2个基因的联合序列(共795bp)数据,以锥头蝗科的锥头蝗(Pyrgomorpha conica)为外群,重建了分子系统树。研究结果表明,在12SrDNA与16SrDNA组成的联合数据中,转换的替代速率明显比颠换的替代速率高得多,核酸的替代已经发生了饱和。分子系统树表明:斑翅蝗亚科是一单系群,该亚科是一个合法的亚科,但斑腿蝗亚科和蝗亚科都不是单系群;斑翅蝗亚科在蝗科内是一个相对原始的类群,而稻蝗亚科比斑翅蝗亚科相对进化,比蝗科的其他亚科的种类相对原始。  相似文献   

10.
11.
The complete mitochondrial genome (mitogenome) of Periplaneta brunnea was sequenced in this study and used to reconstruct the phylogenetic relationship of Blattodea. The circular mitogenome was 15,604?bp long and exhibited typical gene organization and order, consistent with other sequenced Periplaneta mitogenomes. The initiation codon of the P. brunnea COX1 gene was unusual in that no typical ATN or TTG start codon was found. The two longest intergenic spacer sequences found in the P. brunnea mitogenome were 21 and 17?bp long. Twenty-one base spacer had a 4?bp motif (TATT) between tRNA-Glu and tRNA-Met that conservatively displayed in 9 sequenced blattarian mitogenomes. The second spacer was between tRNA-Ser (UCN) and NAD1 containing a 7?bp motif (WACTTAA) that was highly conserved in 14 blattarian mitogenomes. The control region showed a relatively fixed motif present in 6 Blattidae mitogenomes, with a big stem-loop structure. Phylogenetic analyses were conducted using site-homogeneous models based on 13 protein-coding genes (PCGs) and two RNA genes. The trees derived from Bayesian inference and maximum likelihood analyses and recovered a relatively stable relationship among major lineages except for the position of Polyphagidae and inter-family relationships of Blaberidae. Analyses supported the monophyly of Blattidae, Blaberidae, Blattellidae, Polyphagidae, Dictyoptera, and the paraphyly of Blattaria. We also found Mantodea was the sister clade to (Blattaria?+?Isoptera), being the basal position of Dictyoptera in all topologies. Meanwhile, our results also consistently supported that Isoptera should be clustered with Blattaria of Blattodea.  相似文献   

12.
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702–1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.  相似文献   

13.
《Journal of Asia》2022,25(4):101977
Complete mitochondrial genomes (mitogenomes) have long been proved as reliable markers for phylogenetic reconstruction among diverse animal groups, especially benefited from recent rapid development of sequencing techniques. However, the mitogenomes of many important clades remain poorly represented, which restricted the understanding of macroscale evolutionary history of these groups. Here, we sequenced and characterized the complete mitogenome of Trachylophus sinensis, a type species of the Trachylophus genus, which also represents the first sequenced mitogenome in this genus. The complete circular mitogenome was 15,746 bp in length, containing 37 typical genes and one noncoding AT-rich control region. The nucleotide composition of the mitogenome was highly A + T biased, accounting for 70.07 % of the whole mitogenome with a slightly positive AT skewness (0.106). The 13 Protein coding genes (PCGs) used ATN as their start codons, except nad1 which used TTG. All tRNA genes were predicted with a characteristic cloverleaf secondary structure except trnS1(AGN), whose dihydrouridine (DHU) arm was replaced by a simple loop. Phylogenetic analyses recovered Cerambycinae as a monophyletic group with high node supports and the sister relationship between T. sinensis and Nadezhdiella cantori. However, we found that deeper nodes showed not strong support, which may be caused by limited taxa sampling in our study. More mitogenomes should be sequenced representing various taxonomic levels, especially closely related species, which will enhance our understanding of phylogenetic relationships among Cerambycinae.  相似文献   

14.
《Journal of Asia》2021,24(4):1257-1265
The dobsonfly genus Neoneuromus van der Weele, 1909 represents one of the megalopteran lineages with large body-size, and comprises 13 species all endemic to the Oriental region. In the present study, the mitochondrial genomes (mitogenomes) of 12 species of this genus were determined and analyzed for the first time. The mitogenome of the genus-type, Neoneuromus fenestralis (McLachlan, 1869), as a representative of these congeneric species, is herein described in detail. All of the mitogenomes of Neoneuromus are composed of 37 encoded genes and a control region. The evolutionary rates of the protein coding genes (PCGs) of the 13 species of Neoneuromus as well as different genera of Corydalinae are estimated. All the transfer RNA genes (tRNAs) have the typical clover-leaf secondary structure except trnS1 (AGN). Interspecific relationships within Neoneuromus were reconstructed based on different datasets generated from mitogenomic sequences. Our results indicate that tRNA and ribosomal RNA genes (rRNAs) of Neoneuromus species contribute phylogenetic signal when being concatenated with the PCGs, thus should be kept during phylogenetic analysis. The results sheds light on understanding the evolution of these aquatic and predatory insects.  相似文献   

15.
Yin H  Zhi Y  Jiang H  Wang P  Yin X  Zhang D 《Gene》2012,494(2):214-218
The complete nucleotide sequence of the mitochondrial genome (mitogenome) of Gomphocerus tibetanus Uvarov, 1935 (Orthoptera: Acrididae: Gomphocerinae) was determined. It is 15,571 bp in length and contains 74.8% A + T. All Gomphocerus tibetanus protein-coding sequences start with a typical ATN codon. The usual termination codons (TAA and TAG) were found from 13 PCGs except COI and COII which took incomplete codon T as termination codons. All tRNA genes could be folded into the typical cloverleaf secondary structure, except tRNASer(AGN) lacking of dihydrouridine (D) arm. The sizes of the large and small ribosomal RNA genes are 1313 and 822 bp, respectively. The A + T content of the A + T-rich region is 82.3%. A preliminary analysis on characteristics of Gomphocerinae mitogenome was made by comparision among three Gomphocerinae mitogenomes and Locusta migratoria.  相似文献   

16.
Phylogenetic relationship within Neuroptera is controversial, particularly for the various hypotheses based on both morphological and molecular evidence. In the present study, we determined the complete mitochondrial genome (mitogenome) of Gatzara jezoensis, which is the second representative of the tribe Dendroleontini. The G. jezoensis mitogenome contained the conserved set of 37 mitochondrial genes and a putative control region, with a conserved gene arrangement which was similar to that of most sequenced neuropteran mitogenomes. All transfer RNAs exhibited the canonical cloverleaf secondary structure, except for trnS(AGN). The control region contained two conserved elements (ploy-T stretch and ATGGTTCAAYAAAATAAYYCYCTC motif) and abundant microsatellite-like elements. The phylogenetic analysis of sequenced neuropteran mitogenomes using the concatenated protein-coding genes (PCGs) and ribosomal genes recovered the monophyly of Myrmeleontidae, which revealed this dataset could generate the more robust phylogeny of Neuroptera than that of 13 PCGs dataset.  相似文献   

17.
《Genomics》2022,114(2):110305
The subfamily Ototretinae represents an important and unusual lineage of fireflies. Here, we sequenced and annotated three mitogenomes for this subfamily, with two Stenocladius species and one Drilaster species as representatives. The mitogenome of Stenocladius exhibits a rearranged gene order between trnC and trnW caused by transposition, which is a novel finding in Lampyridae. Meanwhile, a long intergenic space (241 to 376 bp) exists between the two rearranged genes, and some remnants (23 bp) of trnW are present within this non-coding region. Moreover, phylogenetic analyses did not recover the monophyly of Ototretinae, in which Drilaster is shown at a basal lineage in Lampyridae, but Stenocladius seems more related to Luciolinae. Therefore, the gene rearrangement in Stenocladius is presumed to result from independent evolutionary events, suggesting that this genus should be placed in a separate lineage. Nevertheless, more representative mitogenomes from different groups are required to verify the present results.  相似文献   

18.
19.
Genus Lateolabrax consists of three species, Japanese sea bass Lateolabrax japonicus, spotted sea bass Lateolabrax maculatus and blackfin sea bass Lateolabrax latus. The complete mitochondrial DNA (mtDNA) of the three sea basses were amplified and sequenced to characterize and discuss their phylogenetic relationships. The length of mitogenomes was 16,593 bp, 16,479 bp and 16,600 bp, respectively, and all of them consisted of 13 protein-coding genes, 2 ribosomal RNA (rRNA), 22 transfer RNA (tRNA) and a control region, which are typical for mtDNA of vertebrate. Most genes were encoded on the H-strand, except for the ND6 and eight tRNA genes encoding on the L-strand. A significant variation among the three species was detected in length of the control region. Phylogenetic relationship among the three species was constructed based on the datasets, including the 12 protein-coding genes (except ND6 gene), 22 tRNA and 2 rRNA sequences. The results supported the sister taxon between L. japonicus and L. maculatus. The genetic resources reported here are useful for further studies in taxonomy and phylogeny of the three sea basses and related species.  相似文献   

20.
《Genomics》2020,112(6):4577-4584
Mitochondrial genomes (mitogenomes) have been widely used for studies on phylogenetic relationships and molecular evolutionary biology. Here, the complete mitogenome sequence of Spilosoma lubricipedum (Noctuoidea: Erebidae: Arctiinae) was determined (total length 15,375 bp) and phylogenetic analyses S. lubricipedum were inferred from available noctuid sequence data. The mitogenome of S. lubricipedum was found to be highly A + T-biased (81.39%) and exhibited negative AT- and GC-skews. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for cox1 with CGA. All tRNAs exhibited typical clover-leaf secondary structures, except for trnS1. The gene order of the S. lubricipedum mitogenome was trnM-trnI-trnQ-nad2. The A + T-rich region of S. lubricipedum contained several conservative features common to noctuid insects. Phylogenetic analysis within Noctuoidea was carried out based on mitochondrial data. Results showed that S. lubricipedum belonged to Erebidae and the Noctuoidea insects could be divided into five well-supported families (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号