首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is a review of the most important, accessible, and relevant literature published between April 2018 and April 2019 in the field of Helicobacter species other than Helicobacter pylori. The initial part of the review covers new insights regarding the presence of gastric and enterohepatic non‐H. pylori Helicobacter species (NHPH) in humans and animals, while the subsequent section focuses on the progress in our understanding of the pathogenicity and evolution of these species. Over the last year, relatively few cases of gastric NHPH infections in humans were published, with most NHPH infections being attributed to enterohepatic Helicobacters. A novel species, designated “Helicobacter caesarodunensis,” was isolated from the blood of a febrile patient and numerous cases of human Helicobacter cinaedi infections underlined this species as a true emerging pathogen. With regard to NHPH in animals, canine/feline gastric NHPH cause little or no harm in their natural host; however they can become opportunistic when translocated to the hepatobiliary tract. The role of enterohepatic Helicobacter species in colorectal tumors in pets has also been highlighted. Several studies in rodent models have further elucidated the mechanisms underlying the development of NHPH‐related disease, and the extra‐gastric effects of a Helicobacter suis infection on brain homeostasis was also studied. Comparative genomics facilitated a breakthrough in the evolutionary history of Helicobacter in general and NHPH in particular. Investigation of the genome of Helicobacter apodemus revealed particular traits with regard to its virulence factors. A range of compounds including mulberries, dietary fiber, ginseng, and avian eggs which target the gut microbiota have also been shown to affect Helicobacter growth, with a potential therapeutic utilization and increase in survival.  相似文献   

2.
This study describes a non‐Helicobacter (H.) pylori Helicobacter (NHPH) infection in a pig veterinarian. The patient suffered from reflux esophagitis and general dyspeptic symptoms and was referred to the hospital for upper gastrointestinal endoscopy. Histologic examination of corpus and antrum biopsies revealed a chronic gastritis. Large spiral‐shaped non‐H. pylori helicobacters could be visualized and were identified as H. suis by PCR. The patient was treated with a triple therapy, consisting of amoxicillin, clarithromycin, and pantoprazole for 10 days. Successful eradication was confirmed after a follow‐up gastrointestinal endoscopy and PCR 10 weeks after treatment. A mild chronic gastritis was, however, still observed at this point in time. This case report associates porcine H. suis strains with gastric disease in humans, thus emphasizing the zoonotic importance of H. suis bacteria from pigs.  相似文献   

3.

Background

Infections with gastric Helicobacter spp. are associated with gastritis, peptic ulceration, and malignancies. Helicobacter pylori is the most prevalent Helicobacter species colonizing the human stomach. Other gastric non‐H. pylori helicobacters (NHPHs) have been described in 0.2%‐6% of human patients with gastric disorders. Nevertheless, due to difficulties in the diagnosis of NHPH infections and lack of routine screening, this is most likely an underestimation of their true prevalence. To the best of our knowledge, no studies have been performed in the presence of Helicobacter spp. in children suffering from gastric disorders in Southern Turkey.

Materials and methods

In total, 110 children with gastric complaints were examined at the Cukurova University Balcali hospital, Turkey. Gastroscopy was performed to evaluate the presence of gastric mucosal lesions. Biopsies of the pyloric gland zone were taken for histopathological analysis, rapid urease testing, and presence of Helicobacter spp. DNA by PCR.

Results

Based on the PCR results, the prevalence of Helicobacter spp. was 32.7% (36/110). H. pylori was found in 30.9% (34/110), H. suis in 1.8% (2/110), and H. heilmannii/H. ailurogastricus in 0.9% (1/110) of the human patients. A mixed infection with H. pylori and H. suis was present in one patient. The presence of mucosal abnormalities, such as nodular inflammation, ulceration, and hyperemia, as well as gastritis, was significantly higher in Helicobacter spp. positive patients.

Conclusion

Helicobacter pylori, H. suis, and H. heilmannii/H. ailurogastricus were present in children with gastric complaints. Infection with these pathogens may be involved in the development of gastritis and ulceration.  相似文献   

4.
Helicobacter species are among the most successful colonizers of the mammalian gastrointestinal and hepatobiliary tract. Colonization is usually lifelong, indicating that Helicobacter species have evolved intricate mechanisms of dealing with stresses encountered during colonization of host tissues, like restriction of essential metal ions. The recent availability of genome sequences of the human gastric pathogen Helicobacter pylori, the murine enterohepatic pathogen Helicobacter hepaticus and the unannotated genome sequence of the ferret gastric pathogen Helicobacter mustelae has allowed for comparitive genome analyses. In this review we present such analyses for metal transporters, metal-storage and metal-responsive regulators in these three Helicobacter species, and discuss possible contributions of the differences in metal metabolism in adaptation to the gastric or enterohepatic niches occupied by Helicobacter species.  相似文献   

5.
Besides the well-known gastric pathogen Helicobacter pylori , other Helicobacter species with a spiral morphology have been detected in a minority of human patients who have undergone gastroscopy. The very fastidious nature of these non- Helicobacter pylori helicobacters (NHPH) makes their in vitro isolation difficult. These organisms have been designated ' Helicobacter heilmannii '. However, sequencing of several genes detected in NHPH-infected tissues has shown that the ' H. heilmannii ' group comprises at least five different Helicobacter species, all of them known to colonize the stomach of animals. Recent investigations have indicated that Helicobacter suis is the most prevalent NHPH species in human. This species has only recently been isolated in vitro from porcine stomach mucosa. Other NHPH that colonize the human stomach are Helicobacter felis, Helicobacter bizzozeronii, Helicobacter salomonis and ' Candidatus Helicobacter heilmannii'. In numerous case reports of human gastric NHPH infections, no substantial information is available about the species status of the infecting strain, making it difficult to link the species with certain pathologies. This review aims to clarify the complex nomenclature of NHPH species associated with human gastric disease and their possible animal origin. It is proposed to use the term 'gastric NHPH' to designate gastric spirals that are morphologically different from H. pylori when no identification is available at the species level. Species designations should be reserved for those situations in which the species is defined.  相似文献   

6.

Background

Non‐Helicobacter pylori helicobacters (NHPHs) besides H. pylori infect human stomachs and cause chronic gastritis and mucosa‐associated lymphoid tissue lymphoma. Cholesteryl‐α‐glucosides have been identified as unique glycolipids present in H. pylori and some Helicobacter species. Cholesterol‐α‐glucosyltransferase (αCgT), a key enzyme for the biosynthesis of cholesteryl‐α‐glucosides, plays crucial roles in the pathogenicity of H. pylori. Therefore, it is important to examine αCgTs of NHPHs.

Materials and Methods

Six gastric NHPHs were isolated from Japanese patients and maintained in mouse stomachs. The αCgT genes were amplified by PCR and inverse PCR. We retrieved the αCgT genes of other Helicobacter species by BLAST searches in GenBank.

Results

αCgT genes were present in most Helicobacter species and in all Japanese isolates examined. However, we could find no candidate gene for αCgT in the whole genome of Helicobacter cinaedi and several enterohepatic species. Phylogenic analysis demonstrated that the αCgT genes of all Japanese isolates show high similarities to that of a zoonotic group of gastric NHPHs including Helicobacter suis, Helicobacter heilmannii, and Helicobacter ailurogastricus. Of 6 Japanese isolates, the αCgT genes of 4 isolates were identical to that of H. suis, and that of another 2 isolates were similar to that of H. heilmannii and H. ailurogastricus.

Conclusions

All gastric NHPHs examined showed presence of αCgT genes, indicating that αCgT may be beneficial for these helicobacters to infect human and possibly animal stomachs. Our study indicated that NHPHs could be classified into 2 groups, NHPHs with αCgT genes and NHPHs without αCgT genes.  相似文献   

7.
8.
Background. Enterohepatic Helicobacter species are emerging pathogens, which are increasingly isolated from humans with enteric diseases. Nevertheless, current methods to detect Helicobacteraceae in the human gut have significant limitations. Methods. Based on 16S‐rRNA gene alignments and computer aided primer analysis a set of group‐specific PCR primers was designed. The evaluation of the PCR assay was performed using 36 ATCC reference strains and intestinal biopsies from 10 patients with defined gastric Helicobacter pylori status. The amplification products derived from clinical samples were cloned and subsequently analyzed by DNA sequencing. Sensitivity of the PCR‐assay was determined by spiking previously negative tested samples with decreasing amounts of Helicobacter DNA. Results. The analysis of the ATCC reference strains revealed amplification products in all 14 Helicobacter strains and Wolinella succinogenes, 21 other microorganisms representing negative controls did not produce PCR fragments. Four out of the 10 patient‐derived samples were positive. Three of them represented H. pylori‐derived DNA confirming the gastric H. pylori infection in these patients. In the fourth patient, who was suffering from Crohn's disease, H. pullorum was identified. The sensitivity of the PCR assay was 0.1 pg of Helicobacter‐derived DNA representing about 40 bacteria. Conclusion. The novel PCR assay described here is an important new tool in rapid and sensitive assessment for the presence of Helicobacteraceae in human gut.  相似文献   

9.
Kabir S 《Helicobacter》2011,16(1):1-8
Background: Helicobacter pylori infection is regarded as the major cause of various gastric diseases and induces the production of several cytokines including interleukin‐17 (IL‐17) recently recognized as an important player in the mammalian immune system. Objective: This review deals with the role of IL‐17 on the H. pylori‐induced infection and immunity in humans and experimental animals. Results: H. pylori infection increases IL‐17 in the gastric mucosa of humans and experimental animals. In humans, IL‐17 induces the secretion of IL‐8 by activating the ERK 1/2 MAP kinase pathway and the released IL‐8 attracts neutrophils promoting inflammation. IL‐23 is increased in patients with H. pylori‐related gastritis and regulates IL‐17 secretion via STAT3 pathway. Studies in H. pylori‐infected mice indicate that IL‐17 is primarily associated with gastric inflammation. The early events in the immune response of immunized and challenged mice include the recruitment of T cells and the production of IL‐17. Neutrophil attracting chemokines are released, and the bacterial load is considerably reduced. IL‐17 plays a dual role in infection and vaccination. In infection, T regulatory cells (Tregs) suppress the inflammatory reaction driven by IL‐17 thereby favoring bacterial persistence. Immunization produces Helicobacter‐specific memory T‐helper cells that can possibly alter the ratio between T‐helper 17 and Treg responses so that the IL‐17‐driven inflammatory reaction can overcome the Treg response leading to bacterial clearance. Conclusion: IL‐17 plays an important role in H. pylori‐related gastritis and in the reduction of Helicobacter infection in mice following immunization.  相似文献   

10.
Helicobacter pylori colonization is highly prevalent among humans and causes significant gastric disease in a subset of those infected. When present, this bacterium dominates the gastric microbiota of humans and induces antimicrobial responses in the host. Since the microbial context of H. pylori colonization influences the disease outcome in a mouse model, we sought to assess the impact of H. pylori challenge upon the pre-existing gastric microbial community members in the rhesus macaque model. Deep sequencing of the bacterial 16S rRNA gene identified a community profile of 221 phylotypes that was distinct from that of the rhesus macaque distal gut and mouth, although there were taxa in common. High proportions of both H. pylori and H. suis were observed in the post-challenge libraries, but at a given time, only one Helicobacter species was dominant. However, the relative abundance of non-Helicobacter taxa was not significantly different before and after challenge with H. pylori. These results suggest that while different gastric species may show competitive exclusion in the gastric niche, the rhesus gastric microbial community is largely stable despite immune and physiological changes due to H. pylori infection.  相似文献   

11.
Helicobacter pullorum and Campylobacter lari are rarely isolated from humans with acute enteritis. Hitherto the two species could only be identified by genotypic techniques. Gas liquid chromatography of whole cell fatty acid extracts is described as the first phenotypic method for discrimination of the two species. Cholesteryl glucoside, a characteristic feature of the genus Helicobacter, but seldom found in other bacteria, could not be detected in Helicobacter pullorum. Therefore, rapid determination of this glycolipid may serve as a discrimination marker for Helicobacter pullorum from most other Helicobacter species.  相似文献   

12.
Background: The presence of enterohepatic Helicobacter species (EHS) is commonly noted in mouse colonies. These infections often remain unrecognized but can cause severe health complications or more subtle host immune perturbations and therefore can confound the results of animal experiments. The aim of this study was to isolate and characterize a putative novel EHS that has previously been detected by PCR screening of specific‐pathogen‐free mice. Materials and Methods: Biochemical analysis of enzyme activities (API campy), morphologic investigation (Gram‐staining and electron microscopy) and genetic analyses (16SrRNA and 23SrRNA analyses, DNA fingerprinting, restriction fragment polymorphisms, and pulsed‐field gel electrophoresis) were used to characterize isolated EHS. Genomic DNA fragments were sequenced to develop a species‐specific PCR detection assay. Results: Scanning electron microscopy revealed the presence of spiral‐shaped EHS, which varied in length (2.5–6 μm) and contained single monopolar or single bipolar sheathed flagella. The bacteria were grown under anaerobic conditions, preferably on agar plates containing serum or blood. The 16SrRNA, genetic, and biochemical analyses indicated the identification of a novel EHS species, named Helicobacter magdeburgensis. We also examined the genome content using pulsed‐field gel electrophoresis. Based on the pattern produced by two restriction enzymes, BamIII and KspI, the genome size was determined to be about 1.7–1.8 Mbp. Conclusion: We isolated and characterized a novel EHS species, H. magdeburgensis, morphologically, biochemically, and genetically. These results are important for future studies on the prevalence and pathophysiologic relevance of such infections. Our PCR assay can be used to detect and discriminate H. magdeburgensis from other Helicobacter species.  相似文献   

13.
The role of Helicobacter pylori infection is explored in more and more extragastric diseases without definite proof in most of the studies, except possibly some hematologic diseases. In cardiovascular diseases, including stroke, the presence of CagA positive strains may be involved. The possible role of helicobacters in hepatobiliary diseases goes beyond that of H. pylori to involve enterohepatic helicobacters. New Helicobacter species are regularly described and molecular methods are developed to improve their detection. Helicobacter felis remains the major species to be used in animal models of Helicobacter infection.  相似文献   

14.
Background: The interest in non‐antibiotic therapies for Helicobacter pylori infections in man has considerably grown because increasing numbers of antibiotic‐resistant strains are being reported. Intervention at the stage of bacterial attachment to the gastric mucosa could be an approach to improve the control/eradication rate of this infection. Materials and Methods: Fractions of purified milk fat globule membrane glycoproteins were tested in vitro for their cytotoxic and direct antibacterial effect. The anti‐adhesive effect on H. pylori was determined first in a cell model using the mucus‐producing gastric epithelial cell line NCI‐N87 and next in the C57BL/6 mouse model after dosing at 400 mg/kg protein once or twice daily from day ?2 to day 4 post‐infection. Bacterial loads were determined by using quantitative real‐time PCR and the standard plate count method. Results: The milk fat globule membrane fractions did not show in vitro cytotoxicity, and a marginal antibacterial effect was demonstrated for defatted milk fat globule membrane at 256 μg/mL. In the anti‐adhesion assay, the results varied from 56.0 ± 5.3% inhibition for 0.3% crude milk fat globule membrane to 79.3 ± 3.5% for defatted milk fat globule membrane. Quite surprisingly, in vivo administration of the same milk fat globule membrane fractions did not confirm the anti‐adhesive effects and even caused an increase in bacterial load in the stomach. Conclusions: The promising anti‐adhesion in vitro results could not be confirmed in the mouse model, even after the highest attainable exposure. It is concluded that raw or defatted milk fat globule membrane fractions do not have any prophylactic or therapeutic potential against Helicobacter infection.  相似文献   

15.
Background: In contrast to wild type, interleukin‐10‐deficient (IL‐10?/–) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL‐10?/– mice leading to the reduction of Helicobacter infection. Materials and Methods: We characterized the immune responses of Helicobacter felis‐infected IL‐10?/– mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4+ T cells in the Helicobacter clearance by injecting H. felis‐infected IL‐10?/– mice with anti‐CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL‐10 double‐deficient mice. Results: Reduction of Helicobacter infection in IL‐10?/– mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL‐10?/– in comparison to wild‐type mice, p < .008) and cellular (urease‐stimulated splenic CD4+ T cells isolated from infected IL‐10?/– mice produce 150‐fold more interferon‐γ in comparison to wild‐type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4+ cells from Helicobacter‐infected IL‐10?/– mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4+ depleted IL‐10?/– in comparison to nondepleted IL‐10?/– mice, p < .02). Mast cell IL‐10?/– double‐deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL‐10?/– mice. Conclusion: Taken together, these results suggest that CD4+ cells are required for Helicobacter clearance in IL‐10?/– mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.  相似文献   

16.
Background. Specific antibodies against Helicobacter were enriched from the colostra of hyperimmunized cows. Efficacies of colostral control preparation and immune preparation containing specific antibodies against Helicobacter felis were studied in the prevention and treatment of experimental H. felis infection in mice. Materials and Methods. H. felis‐infected mice were given either immune or control preparation with or without complement or amoxicillin orally in four different trials. H. felis status was assessed on the basis of bacterial stainings, gastric histology and serum antibodies. Results. Immune, but not control preparation, prevented H. felis infection (p > 0.01), the efficacy being dependent on the presence of specific antibodies. In the trial on infected Balb/c mice treatment with immune preparation (p = 0.029) but not control preparation decreased the colonization of gastric antrum by H. felis. In the further trials with infected SJL‐mice, treatments with colostral preparations did not decrease colonization. Amoxicillin treatment decreased the colonization with trend‐setting significance (p = 0.056; infected mice as controls), whereas amoxicillin combined with immune preparation had a significant effect (p < 0.0005). Conclusions. Specific colostral antibodies were useful in the prevention of Helicobacter infection in a mouse model. The results of the treatment trials were controversial but a similar colostral immune preparation against H. pylori could be effective and useful in preventing infections in humans and during antibiotic treatment.  相似文献   

17.
Background:  Helicobacter pylori is a spiral‐shaped Gram‐negative microaerophilic bacterium associated with a number of gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. Several studies have implicated a Th17 response as a key to protective immunity against Helicobacter. Materials and Methods:  Wild type (WT) and MyD88‐deficient (MyD88?/?) mice in the C57BL/6 background were infected with H. felis for 6 and 25 weeks and colonization density and host response evaluated. Real‐time PCR was used to determine the expression of cytokines and antimicrobial peptides in the gastric tissue of mice. Results:  mRNA expression levels of the Th17 cytokines interleukin‐17A (IL‐17A) and IL‐22 were markedly up‐regulated in WT compared with MyD88?/? mice both at 6 and at 25 weeks in response to infection with H. felis, indicating that induction of Th17 responses depends on MyD88 signaling. Furthermore, reduction in the expression of Th17‐dependent intestinal antimicrobial peptide lipocalin‐2 was linked with increased bacterial burden in the absence of MyD88 signaling. Conclusion:  We provide evidence showing that MyD88‐dependent signaling is required for the host to induce a Th17 response for the control of Helicobacter infection.  相似文献   

18.
Gastric cancer causes a large social and economic burden to humans. Helicobacter pylori (H pylori) infection is a major risk factor for distal gastric cancer. Detailed elucidation of H pylori pathogenesis is significant for the prevention and treatment of gastric cancer. Animal models of H pylori‐induced gastric cancer have provided an invaluable resource to help elucidate the mechanisms of H pylori‐induced carcinogenesis as well as the interaction between host and the bacterium. Rodent models are commonly used to study H pylori infection because H pylori‐induced pathological processes in the stomachs of rodents are similar to those in the stomachs of humans. The risk of gastric cancer in H pylori‐infected animal models is greatly dependent on host factors, bacterial determinants, environmental factors, and microbiota. However, the related mechanisms and the effects of the interactions among these impact factors on gastric carcinogenesis remain unclear. In this review, we summarize the impact factors mediating gastric cancer risk when establishing H pylori‐infected animal models. Clarifying these factors and their potential interactions will provide insights to construct animal models of gastric cancer and investigate the in‐depth mechanisms of H pylori pathogenesis, which might contribute to the management of H pylori‐associated gastric diseases.  相似文献   

19.
Background: The mucin Muc1 is constitutively expressed by the gastric mucosa and is likely the first point of direct contact between the host stomach and the adherent pathogens. The expression of Muc1 has been shown to limit colonization of mice by Helicobacter pylori, known to adhere to the gastric epithelium, as well as associated pathology. However, the potential role of this mucin against nonadherent Helicobacter has not been previously studied. We therefore examined the importance of Muc1 on the pathogenesis of Helicobacter felis, believed not to adhere to the murine mucosa. Methods and results: Using primary cell cultures, we found that H. felis can bind gastric epithelial cells in vitro, and adherence to epithelial cells deficient in Muc1 was increased compared to controls that expressed the mucin. However, following infection of deficient mice, we found that Muc1 did not impact on H. felis colonization or pathogenesis in vivo, in contrast to previous observations with H. pylori. Conclusions: This demonstrates a variable effect of Muc1 on protection against closely related adherent and nonadherent Helicobacter species, and supports a key role for Muc1 in limiting attachment of adherent bacteria to the gastric mucosal surface.  相似文献   

20.
BACKGROUND: The lipopolysaccharide of Helicobacter pylori plays an important role in colonization and pathogenicity. The present study sought to compare structural and biological features of lipopolysaccharides from gastric and enterohepatic Helicobacter spp. not previously characterized. MATERIALS AND METHODS: Purified lipopolysaccharides from four gastric Helicobacter spp. (H. pylori, Helicobacter felis, Helicobacter bizzozeronii and Helicobacter mustelae) and four enterohepatic Helicobacter spp. (Helicobacter hepaticus, Helicobacter bilis, 'Helicobacter sp. flexispira' and Helicobacter pullorum) were structurally characterized using electrophoretic, serological and chemical methods. RESULTS: Structural insights into all three moieties of the lipopolysaccharides, i.e. lipid A, core and O-polysaccharide chains, were gained. All species expressed lipopolysaccharides bearing an O-polysaccharide chain, but H. mustelae and H. hepaticus produced truncated semirough lipopolysaccharides. However, in contrast to lipopolysaccharides of H. pylori and H. mustelae, no blood group mimicry was detected in the other Helicobacter spp. examined. Intra-species, but not interspecies, fatty acid profiles of lipopolysaccharides were identical within the genus. Although shared lipopolysaccharide-core epitopes with H. pylori occurred, differing structural characteristics were noted in this lipopolysaccharide region of some Helicobacter spp. The lipopolysaccharides of the gastric helicobacters, H. bizzozeronii and H. mustelae, had relative Limulus amoebocyte lysate activities which clustered around that of H. pylori lipopolysaccharide, whereas H. bilis, 'Helicobacter sp. flexispira' and H. hepaticus formed a cluster with approximately 1000-10,000-fold lower activities. H. pullorum lipopolysaccharide had the highest relative Limulus amoebocyte lysate activity of all the helicobacter lipopolysaccharides (10-fold higher than that of H. pylori lipopolysaccharide), and all the lipopolysaccharides of enterohepatic Helicobacter spp. were capable of inducing nuclear factor-Kappa B(NF-kappaB) activation. CONCLUSIONS: The collective results demonstrate the structural heterogeneity and pathogenic potential of lipopolysaccharides of the Helicobacter genus as a group and these differences in lipopolysaccharides may be indicative of adaptation of the bacteria to different ecological niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号