首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Acetyl-CoA carboxylase from rat epididymal fat tissue is activated by phosphorylase phosphatase, a reaction which is inhibited by phosphatase inhibitor-1. This activation is accompanied by a corresponding loss of 32P from the labelled enzyme. These results establish that dephosphorylation of the enzyme causes its activation.  相似文献   

2.
Allogeneic cells pretreated for 48 hr with 2 × 10?6M ouabain have lost the capacity to show the mixed lymphocyte reaction (MLR). Analysis of various combinations of cells in the one-way MLR revealed that this effect was on the stimulating cells and not on the responding cells. Pretreatment of cells from both donors with 10?7M ouabain caused no change in incorporation of labeled thymidine into DNA during the first 5 days of mixed lymphocyte culture; thereafter, as incorporation by the controls declined, that of the pretreated cells continued to increase. This effect was also on the stimulating cells and not on the responders. The irreversible effects of ouabain are thus either to activate or inactivate the stimulating cells depending on the concentration of the drug; there is little or no effect on the responding cells.  相似文献   

3.
Purified commercial hyaluronic acid contains significant amounts of iron. Addition of Fe2+ to solutions of it causes depolymerization, which is inhibited by catalase and scavengers of the hydroxyl radical (. OH) but not by superoxide dismutase. Fe3+ is ineffective. Ascorbic acid also depolymerizes hyaluronic acid, apparently because it can reduce Fe3+ in the reaction mixtures to Fe2+. Ascorbate-induced depolymerization is inhibited by the specific iron chelator desferrioxamine, by catalase, and by scavengers of the hydroxyl radical. The relevance of these observations to rheumatoid arthritis and inflammatory joint diseases is discussed.  相似文献   

4.
A direct assay method is described for l-pipecolate oxidase. The assay uses NaHSO3 to trap the L-α-amino[3H]adipateδ-semialdehyde (AAS) formed as a direct reaction product of l-pipecolate oxidase from l-[3H]pipecolic acid. The adduct so formed was separated from the substrate on Dowex 50 (H+) column. The product was identified as [3H]AAS by amino acid analysis after breaking down the adduct by boiling under acidic conditions. The assay is simpler and more specific than fluorometric methods; it is also more sensitive; requiring at most 16 μg of liver peroxisome-enriched protein per assay. We have used this assay procedure to detect l-pipecolate oxidase in skin fibroblasts obtained from a control subject and from patients of hyperpipecolic acidaemia and Zellweger syndrome and found that this enzyme activity is present in the control, but absent or decreased in the patients with the peroxisomal disorders.  相似文献   

5.
6.
Healthy male volunteers were infused for three hours with either a dopamine hydrochloride solution at a rate of 4 ug/kg/min or with normal saline. Plasma amine oxidase and platelet MAO activity towards benzylamine both increased in response to intravenous dopamine. There was no increase in enzyme activity when dopamine was added to the platelet and plasma enzymes in vitro. This heretofore unreported increase in the oxidative deaminating capacity of the human organism may represent an adaptive physiologic response to the high circulating levels of dopamine and provides further evidence for a possible functional significance of these enzymes in man.  相似文献   

7.
Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA.  相似文献   

8.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the nigrostriatal pathway. The etiology of PD remains unclear and most cases are sporadic, however genetic mutations in more than 20 proteins have been shown to cause inherited forms of PD. Many of these proteins are linked to mitochondrial function, defects in which are a central characteristic of PD. Post-translational modifications (PTMs) allow rapid and reversible control over protein function. Largely focussing on mitochondrial dysfunction in PD, here we review findings on the PTMs phosphorylation, SUMOylation and ubiquitination that have been shown to affect PD-related proteins.  相似文献   

9.
Concentrations of relaxin, prolactin, unchromatographed estradiol 17β (E) and progesterone (P4) were measured in serial samples of inferior vena caval blood, in three pigs, during late pregnancy, and parturition. Maximal relaxin concentrations occurred 60 to 24h before parturition, and ranged from 60 to 286ng/ml. Prolactin concentrations increased from 12.5ng/ml, 48 to 36 hours before parturition, to between 79 to 184ng/ml. At the time of the relaxin surge, E levels were high, and P4 concentrations were decreasing, thus raising the EP4 ratio. A surge in prolactin concentrations followed upon a decline of P4 to less than 10ng/ml, coinciding with the increase in relaxin concentrations in 2 gilts, and following the surge in relaxin in the third. Udder development occurred near the time of increased relaxin concentrations. ‘Milk let down’ followed maximal relaxin and prolactin concentrations in two gilts, and the increase in prolactin, rather than the increase in relaxin concentration, in the third.  相似文献   

10.
11.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

12.
Aging is a worldwide challenge, and it is accompanied by the accumulation of senescent cells. Cellular senescence is traditionally defined as permanent cell growth arrest and currently includes the senescence-associated secretory phenotype (SASP). There are two main types of cellular senescence, including telomere-dependent replicative senescence and stress-induced premature senescence. The process of cellular senescence is mainly controlled by two effector pathways, namely, the p53-p21 and p16-retinoblastoma protein (pRB) pathways. Vascular smooth muscle cells (VSMCs) are integral parts of arteries and play an important role in vascular structure and function. VSMC senescence may be triggered by many factors, such as angiotensin II, oxidative stress, inflammation, DNA damage, and small molecule compounds. These inducers are able to genetically and epigenetically regulate VSMC senescence. The senescence of VSMCs together with the SASP contributes to chronic vascular inflammation, the loss of arterial function, and the development of age-related diseases. Current evidence suggests that the senescence of VSMCs might be harmful to individual health, whereas its influence on the lifespan is not clear. The purpose of this paper was to review the current knowledge regarding VSMC senescence and its relevance to hypertension, atherosclerosis, and diabetes, as well as the potential mechanisms responsible for VSMC senescence in these age-related diseases.  相似文献   

13.
14.
Mitochondrial impairment and calcium (Ca++) dyshomeostasis are associated with Parkinson's disease (PD). When intracellular ATP levels are lowered, Ca++-ATPase pumps are impaired causing cytoplasmic Ca++ to be elevated and calpain activation. Little is known about the effect of calpain activation on Parkin integrity. To address this gap, we examined the effects of mitochondrial inhibitors [oligomycin (Oligo), antimycin and rotenone] on endogenous Parkin integrity in rat midbrain and cerebral cortical cultures. All drugs induced calpain-cleavage of Parkin to ~36.9/43.6 kDa fragments. In contrast, treatment with the proinflammatory prostaglandin J2 (PGJ2) and the proteasome inhibitor epoxomicin induced caspase-cleavage of Parkin to fragments of a different size, previously shown by others to be triggered by apoptosis. Calpain-cleaved Parkin was enriched in neuronal mitochondrial fractions. Pre-treatment with the phosphatase inhibitor okadaic acid prior to Oligo-treatment, stabilized full-length Parkin phosphorylated at Ser65, and reduced calpain-cleavage of Parkin. Treatment with the Ca++ ionophore A23187, which facilitates Ca++ transport across the plasma membrane, mimicked the effect of Oligo by inducing calpain-cleavage of Parkin. Removing extracellular Ca++ from the media prevented oligomycin- and ionophore-induced calpain-cleavage of Parkin. Computational analysis predicted that calpain-cleavage of Parkin liberates its UbL domain. The phosphagen cyclocreatine moderately mitigated Parkin cleavage by calpain. Moreover, the pituitary adenylate cyclase activating peptide (PACAP27), which stimulates cAMP production, prevented caspase but not calpain-cleavage of Parkin. Overall, our data support a link between Parkin phosphorylation and its cleavage by calpain. This mechanism reflects the impact of mitochondrial impairment and Ca++-dyshomeostasis on Parkin integrity and could influence PD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号