首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Geographical variation in the periodicity of gypsy moth outbreaks   总被引:4,自引:0,他引:4  
The existence of periodic oscillations in populations of forest Lepidoptera is well known. While information exists on how the periods of oscillations vary among different species, there is little prior evidence of variation in periodicity within the range of a single Lepidopteran species. The exotic gypsy moth is an introduced foliage-feeding insect in North America. Its populations are characterized by high amplitude oscillations between innocuously low densities and outbreak levels during which large regions of forests are defoliated. These outbreaks are recognized to arise periodically with considerable synchrony across much of the gypsy moth's North American range. Our analysis indicates that gypsy moth outbreaks in North America are periodic but they exhibit two dominant periodicities: a primary period of 8–10 yr (as previously reported) and a secondary period of 4–5 yr (a new finding in this study). The outbreak periodicity varied geographically and this variation was associated with forest type. We found that in the most susceptible forest types, those on xeric sites where oak is often mixed with pines, outbreak periodicity had a more dominant 5-yr period while in forest types characteristic of more mesic sites where oak was mixed with maples and other species, cycles were clearly operating on a 10-yr period.  相似文献   

3.
We used small perturbations in adult numbers to control large fluctuations in the chaotic demographic dynamics of laboratory populations of the flour beetle Tribolium castaneum . A nonlinear mathematical model was used to identify a sensitive region of phase space where the addition of a few adult insects would result in a dampening of the life stage fluctuations. Three experimental treatments were applied: one in which perturbations were made whenever the populations were inside the sensitive region ("in-box treatment"), another where perturbations were made whenever the populations were outside the sensitive region ("out-box treatment"), and an unperturbed control. The in-box treatment caused a stabilization of insect densities at numbers well below the peak values exhibited by the out-box and control populations. This study demonstrates how small perturbations can be used to influence the chaotic dynamics of an ecological system.  相似文献   

4.
5.
The effect of landscape mosaic on recurrent traveling waves in spatial population dynamics was studied via simulation modeling across a theoretical landscape with varying levels of connectivity. Phase angle analysis was used to identify locations of wave epicenters on patchy landscapes. Simulations of a tri-trophic model of the larch budmoth (Zeiraphera diniana) with cyclic population dynamics on landscapes with a single focus of high-density habitat produced traveling waves generally radiating outwardly from single and multiple foci and spreading to isolated habitats. We have proposed two hypotheses for this result: (1) immigration subsidies inflate population growth rates in the high connectivity habitat and, thus, reduce the time from valleys to peaks in population cycles; (2) populations in the high connectivity habitat crash from peaks to valleys faster than in an isolated habitat due to over-compensatory density dependence. While population growth rates in the high connectivity habitat benefitted from immigration subsidies, times from population valleys to peaks were greater in high connectivity habitat due to a greater magnitude of fluctuations. Conversely, the mean time of the crash from population peaks to valleys was shorter in high connectivity habitat, supporting the second hypothesis. Results of this study suggest over-compensatory density dependence as an underlying mechanism for recurrent traveling waves originating in high connectivity habitats aggregated around a single focus.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
1. The population dynamics of many herbivorous insects are characterized by rapid outbreaks, during which the insects severely defoliate their host plants. These outbreaks are separated by periods of low insect density and little defoliation. In many cases, the underlying cause of these outbreaks is unknown. 2. Mechanistic models are an important tool for understanding population outbreaks, but existing consumer-resource models predict that severe defoliation should happen much more often than is seen in nature. 3. We develop new models to describe the population dynamics of plants and insect herbivores. Our models show that outbreaking insects may be resource-limited without inflicting unrealistic levels of defoliation. 4. We tested our models against two different types of field data. The models successfully predict many major features of natural outbreaks. Our results demonstrate that insect outbreaks can be explained by a combination of food limitation in the herbivore and defoliation and intraspecific competition in the host plant.  相似文献   

7.
8.
ABSTRACT. 1. We test the hypothesis that defoliation has short-term and long-term negative effects on performance of winter moth Operophtera brumata L. on two species of food plants: Garry oak ( Quercus garryana Dougl.) and apple ( Malus domesticus L.).
2. Pupal weight (and hence potential fecundity of females) decreased with increased defoliation in the current year on both tree species.
3. Pupal weight increased, however, with increased level of defoliation in the previous year.
4. Increased weight of pupae from larvae which had fed on previously defoliated trees may buffer population decline by increasing fecundity of moths in the next generation.  相似文献   

9.
Optimisation of reproductive investment is crucial for Darwinian fitness, and detailed long-term studies are especially suited to unravel reproductive allocation strategies. Allocation strategies depend on the timing of resource acquisition, the timing of resource allocation, and trade-offs between different life-history traits. A distinction can be made between capital breeders that fuel reproduction with stored resources and income breeders that use recently acquired resources. In capital breeders, but not in income breeders, energy allocation may be decoupled from energy acquisition. Here, we tested the influence of extrinsic (weather conditions) and intrinsic (female characteristics) factors during energy storage, vitellogenesis and early gestation on reproductive investment, including litter mass, litter size, offspring mass and the litter size and offspring mass trade-off. We used data from a long-term study of the viviparous lizard, Lacerta (Zootoca) vivipara. In terms of extrinsic factors, rainfall during vitellogenesis was positively correlated with litter size and mass, but temperature did not affect reproductive investment. With respect to intrinsic factors, litter size and mass were positively correlated with current body size and postpartum body condition of the previous year, but negatively with parturition date of the previous year. Offspring mass was negatively correlated with litter size, and the strength of this trade-off decreased with the degree of individual variation in resource acquisition, which confirms theoretical predictions. The combined effects of past intrinsic factors and current weather conditions suggest that common lizards combine both recently acquired and stored resources to fuel reproduction. The effect of past energy store points out a trade-off between current and future reproduction.  相似文献   

10.
苹果蠹蛾不育昆虫释放技术研究进展   总被引:1,自引:1,他引:1  
刘伟  徐婧  张润志 《昆虫知识》2012,49(1):268-274
不育昆虫释放技术(sterile insect technique,SIT)是一种环境友好、可作为大面积害虫综合治理(AW-IPM)的防治技术,是以压倒性比例释放不育昆虫来减少田间同种害虫繁殖量的害虫治理方法。苹果蠹蛾Cydia pomonella(L.)是世界重要的梨果类害虫,现已入侵世界5洲71国。本文综述了苹果蠹蛾大规模饲养技术、辐射不育技术、释放技术3个关键环节的研究与技术进展,主要包括:苹果蠹蛾人工饲料、实验种群建立、饲养设备与条件、收集和质量评估、长距离运输、辐射源与设备、辐射剂量与敏感性、释放方法、释放标记和释放量等,并介绍了各国采用SIT技术的应用效果。苹果蠹蛾在我国新疆、甘肃、宁夏、内蒙、黑龙江、吉林6个省区发现,对我国苹果产业安全生产构成严重威胁,我国很有必要引进并建立苹果蠹蛾SIT防治技术体系。  相似文献   

11.
To control invasive Anoplophora outbreaks, it is crucial to accurately date infestation dynamics. Dating of Anoplophora outbreaks is possible as these xylobiont insects induce wounds in living trees by forming e.g., exit holes. This study investigates to what precision these wounds can be dated with dendrochronological techniques. In an experimental setting, we studied the precision of wound dating on Acer palmatum, an ornamental tree occasionally containing larvae of A. chinensis. We studied the development of wound reactions at the beginning, during and after the growing season, both in relation to leaf phenology and intra-annual tree-ring growth. We found that the precision of dating exit holes is limited due to the highly variable intra-annual tree-ring growth whereby only an accurate distinction can be made between wounds originated during, or after tree-ring formation. The resolution was improved using local growth—the local reactivation of xylem growth around the wound—as a marker for wounds that occurred at the end of the growing season. We conclude that the intra-annual precision of dating Anoplophora outbreaks in Acer palmatum in the temperate North-western European climate is limited to three distinct phases: (i) The period of dormancy and leaf emergence (ca. October until April/beginning of May), when the wounds are located at the tree-ring boundary (ii) The period of tree-ring growth in which wounds are located within the tree ring (ca. end of April/beginning of May until late August/beginning of September), (iii) end of growing season (ca. end of August/September) in which local growth occurs.  相似文献   

12.
A relationship between outbreaks of the oriental tussock moth, Euproctis flava, in Akita Prefecture and weather conditions have been analyzed in the present paper. The results obtained are summarized as follows: Outbreaks were, in most cases, observed at intervals of 7–9 years, and the population fluctuation was considered to be regular, when small rises of population density were taken into consideration. The condition of low temperature and decreased percentage of sunny hours in spring and summer has a great influence upon the occurrence of outbreaks, and a big outbreak seems to come when a peak of the intrinsic population fluctuation occurs just simultaneously with such a weather condition.  相似文献   

13.
气候变化对中国农作物虫害发生的影响   总被引:4,自引:0,他引:4  
张蕾  霍治国  王丽  姜玉英 《生态学杂志》2012,31(6):1499-1507
基于1961—2010年全国农区527个气象站点气象资料、全国病虫害资料以及农作物种植面积等资料,对全国虫害发生面积与气象因子采用相关分析法,分析了气象要素变化对虫害发生的影响。结果表明:气候变化背景下,年平均温度、平均降水强度分别以0.27℃.10a-1、0.24mm.(d.10a)-1的速度增长,年日照时数以47.40h.10a-1的速度减小;年降水量增长速率为0.14mm.10a-1,但波动较大;虫害发生面积率距平与平均温度、平均降水强度距平呈显著正相关,平均温度、平均降水强度分别每增加1℃、1mm.d-1,虫害发生面积率增加0.648、0.713,虫害发生面积将增加0.96、1.06亿hm2次;虫害发生面积率距平与年日照时数距平呈显著负相关,其每降低100h,虫害发生面积率增加0.40,虫害发生面积将增加0.59亿hm2次;总体上,虫害发生面积率距平与年降水量距平的关系不明显。虫害发生面积率距平与年平均小雨量、微雨量雨日数、小雨量雨日数距平呈显著负相关,3个因子分别每减少1mm、1d、1d,虫害发生面积率增加0.014、0.066、0.052,发生面积将增加0.02、0.10、0.08亿hm2次。  相似文献   

14.
Fluctuations in resource quality and quantity, and changes in mortality due to predators and parasites are thought to be of prime importance in the regular fluctuations of forest insects. We examine how food limitation and parasitoids with different phenologies of attack regulate the population cycles of insect hosts. Our analysis of the limit cycle of a model with a biologically realistic form of density dependence in the host yields two novel predictions. First, outbreaks will typically last for only 2 generations after parasitoids begin to reduce the host population below the maximum density. Second, host growth rate is important in determining cycle length only when parasitoids attack before the impacts of resource limitation affect the host. The robustness of these predictions are tested using a more general form of density dependence in the host, revealing that our predictions are valid as long as density dependence in the host is not too overcompensatory.  相似文献   

15.
The potential of trap cropping as a pest control strategy was explored for two specialist moth species, where oviposition behaviour determines larval distribution. Oviposition behaviour was studied at three different scales: Individual plants in the laboratory, small scale field experiments with and without cages, and medium scale field trials. The study insects were the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a specialist on Brassica species and the leek moth, Acrolepiopsis assectella (Z.) (Lepidoptera: Acrolepiidae), a specialist on Allium species. The diamondback moth preferred Indian mustard, Brassica juncea (L.) over white cabbage, B. oleracea var alba (L.). The leek moth did not show preference when offered leek, Allium porrum (L.) and chives, A. schoenoprasum (L.). However, the leek moth did prefer to oviposit on plants of a larger biomass over smaller plants. In both the small scale and the medium scale field studies the trap crops reduced the number of eggs laid on the primary crop. The total number of eggs laid in the monoculture and the trap crop treatments were the same in the small scale field cage study, but the females distributed their eggs differently. More eggs were laid on trap crops compared with primary crops and this pattern was also validated in the medium scale field trials. In this study only the direct effects of trap cropping were considered. Indirect effects of vegetation diversity such as enhancement of natural enemies could potentially increase the efficacy of trap cropping.  相似文献   

16.
ABSTRACT.
  • 1 Removal field experiments and observational studies have been undertaken to determine whether feeding by cinnabar moth Tyria jacobaeae L. on the flower heads of ragwort Senecio jacobaea L. affects the abundance of the fly Pegohylemyia seneciella (Meade) that feeds in the flower heads as a larva.
  • 2 Correlations between the population density of cinnabar moth and the population density of the fly were suggestive of habitat separation, but provided little evidence of exploitation competition.
  • 3 Removal of cinnabar moth by hand from replicated plots over two years shows that, in years when ragwort flower production is consumed by cinnabar moth caterpillars, the fly may show no recruitment at all.
  • 4 Fly populations persist in refugia, exploiting ragwort plants that grow in areas where there are no cinnabar moth.
  • 5 Recruitment of ragwort is not seed limited, so the reduction in seed production caused by P. seneciella (maximum about 30%) has no impact on ragwort abundance, or on the abundance of cinnabar moth.
  • 6 We conclude that there is strong interspecific competition between these two species, and that the competition is highly asymmetric. The cinnabar moth had a substantial effect on the recruitment of the fly in 1986, but the fly has no measurable impact on the recruitment of the moth. In six years out of seven in our long-term study, cinnabar moth reduced flower production to levels comparable to those measured in 1986, and we infer that strong competition with the fly was likely in six years out of seven.
  • 7 One reason why there are so few published examples of asymmetric interspecific competition may be simply that the experiments are thought too obvious to be worth doing. We argue that this is not a good reason for eschewing manipulative field experiments, and that few processes in ecology are at all obvious when investigated in detail.
  相似文献   

17.
1. Novel manipulations of local climate were employed to investigate how warmer winters with either wetter or drier summers would affect the Auchenorrhyncha, a major component of the insect fauna of grasslands. Direct and indirect effects of climate manipulation were found.
2. Supplemented summer rainfall resulted in an increase in vegetation cover, leading to an increase in the abundance of the Auchenorrhyncha.
3. Summer drought, however, caused a decrease in vegetation cover, but this did not lead to a corresponding decrease in the abundance of the Auchenorrhyncha.
4. Egg hatch and the termination of nymphal hibernation occurred earlier in winter warmed plots; however, the rate of nymphal development was unaffected.  相似文献   

18.
A population model was derived for light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), subject to the sterile insect technique (SIT). The model was parameterized from the literature and from recent laboratory studies conducted in New Zealand and Australia. Relationships were fitted for several model parameters that vary with irradiation dose, allowing the model to simulate effectively complete sterility at 300 Gy through inherited sterility occurring from lower doses. At 300 Gy, the model suggests that eventual population extinction is 95% probable when the ratio of released to wild males in monitoring traps exceeds 6.4. Higher overflooding rates would be required to achieve eradication more rapidly. The optimal release interval, in terms of minimizing the required rate of production of factory moths, is approximately weekly. There is little advantage in releasing males only compared with releasing both sexes. Female-only releases are unlikely to be a useful tool for inherited sterility eradication because there is no reduction in the fertility of F1 offspring. The critical release rate required to halt population increase declines with decreasing irradiation dose, but at doses of < 171 Gy there is a risk that irradiated-lineage moths may form a self-sustaining population, making eradication by SIT alone impossible. The model suggests that a dose of around 200 Gy may be optimal because the resulting inherited sterility would reduce by a third the number of factory moths required compared with 300 Gy.  相似文献   

19.

Background

The Eocene, a time of fluctuating environmental change and biome evolution, was generally driven by exceptionally warm temperatures. The Messel (47.8 Ma) and Eckfeld (44.3 Ma) deposits offer a rare opportunity to take a census of two, deep-time ecosystems occurring during a greenhouse system. An understanding of the long-term consequences of extreme warming and cooling events during this interval, particularly on angiosperms and insects that dominate terrestrial biodiversity, can provide insights into the biotic consequences of current global climatic warming.

Methodology/Principal Findings

We compare insect-feeding damage within two middle Eocene fossil floras, Messel and Eckfeld, in Germany. From these small lake deposits, we studied 16,082 angiosperm leaves and scored each specimen for the presence or absence of 89 distinctive and diagnosable insect damage types (DTs), each of which was allocated to a major functional feeding group, including four varieties of external foliage feeding, piercing- and-sucking, leaf mining, galling, seed predation, and oviposition. Methods used for treatment of presence–absence data included general linear models and standard univariate, bivariate and multivariate statistical techniques.

Conclusions/Significance

Our results show an unexpectedly high diversity and level of insect feeding than comparable, penecontemporaneous floras from North and South America. In addition, we found a higher level of herbivory on evergreen, rather than deciduous taxa at Messel. This pattern is explained by a ca. 2.5-fold increase in atmospheric CO2 that overwhelmed evergreen antiherbivore defenses, subsequently lessened during the more ameliorated levels of Eckfeld times. These patterns reveal important, previously undocumented features of plant-host and insect-herbivore diversification during the European mid Eocene.  相似文献   

20.
Abstract The effects of elevated CO2 on foliar chemistry of two tree species (Populus pseudo‐simonii Kitag. and Betula platyphylla) and on growth of gypsy moth (Lymantria dispar L.) larvae were examined. Furthermore, we focused on the comparison of results on the growth responses of larvae obtained from two methods of insect rearing, the no‐choice feeding trial performed in the laboratory or in situ in open‐top chambers. On the whole, both primary and secondary metabolites in the leaves of the two tree species were significantly affected by main effects of time (sampling date), CO2 and species. Elevated CO2 significantly increased the C : N ratio and concentrations of the soluble sugar, starch, total nonstructural carbohydrates, total phenolics and condensed tannins, but significantly decreased the concentration of nitrogen. Higher contents of total phenolics and condensed tannins were detected in the frass of larvae reared in elevated CO2 treatments. Overall, the growth of gypsy moth larvae were significantly inhibited by elevated CO2 and CO2‐induced changes in leaf quality. Our study did not indicate the two methods of insect rearing could influence the direction of effects of elevated CO2 on the growth of individual insects; however, the magnitude of negative effects of elevated CO2 on larval growth did differ between the two insect rearing methods, and it seems that the response magnitude was also mediated by larval age and host plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号